Abstract

The homogeneous mixture method (HMM) is a popular class of models used in the computational prediction of cavitation. Several cavitation models have been developed for use with HMM to govern the development and destruction of vapor in a fluid system. Two models credited to Kunz and Schnerr–Sauer are studied in this paper. The goal of this work is to provide an assessment of the two cavitation submodels in their ability to predict cavitation in nozzle flow. Validation data were obtained via experiments which employ both passive cavitation detection, (PCD) via acoustic sensing and optical cavitation detection (OCD) via camera imaging. The experiments provide quantitative information on cavitation inception and qualitative information on the vapor in the nozzle. The results show that initial vapor formation is not predicted precisely but within reason. A sensitivity analysis of the models to input parameters shows that the Schnerr–Sauer method does not depend upon the estimation of nuclei size and number density. Small changes in the vapor formation rate but not the total vapor volume can be seen when weighting parameters are modified. In contrast, changes to the input parameters for the Kunz model greatly change the final total vapor volume prediction. The assessment also highlights the influence of vapor convection within the method. Finally, the analysis shows that if the fluid and nozzle walls do not support nuclei larger than 40 μm, the methods would still predict cavitation when indeed there would be none in practice.

References

References
1.
Knapp
,
R. T.
,
Daily
,
J. W.
, and
Hammitt
,
F. G.
,
1970
,
Cavitation
,
McGraw-Hill Book Company
, New York.
2.
Koukouvinis
,
P.
,
Gavaises
,
M.
,
Li
,
J.
, and
Wang
,
L.
,
2016
, “
Large Eddy Simulation of Diesel Injector Including Cavitation Effects and Correlation to Erosion Damage
,”
Fuel
,
175
, pp.
26
39
.10.1016/j.fuel.2016.02.037
3.
Shervani-Tabar
,
M. T.
,
Parsa
,
S.
, and
Ghorbani
,
M.
,
2012
, “
Numerical Study on the Effect of the Cavitation Phenomenon on the Characteristics of Fuel Spray
,”
Math. Comput. Modell.
,
56
(
5–6
), pp.
105
117
.10.1016/j.mcm.2011.12.012
4.
Jiang
,
C.
,
Xu
,
H.
,
Srivastava
,
D.
,
Ma
,
X.
,
Dearn
,
K.
,
Cracknell
,
R.
, and
Krueger-Venus
,
J.
,
2017
, “
Effect of Fuel Injector Deposit on Spray Characteristics, Gaseous Emissions and Particular Matter in a Gasoline Direct Injection Engine
,”
Appl. Energy
,
203
, pp.
390
402
.10.1016/j.apenergy.2017.06.020
5.
Gao
,
Y.
,
Wei
,
M.
,
Yan
,
F.
,
Chen
,
L.
,
Li
,
G.
, and
Feng
,
L.
,
2017
, “
Effects of Cavitation Flow and Stagnant Bubbles on the Initial Temporal Evolution of Diesel Spray
,”
Exp. Therm. Fluid Sci.
,
87
, pp.
69
79
.10.1016/j.expthermflusci.2017.04.029
6.
Salvador
,
F. J.
,
Romero
,
J.-V.
,
Roselló
,
M.-D.
, and
Martínez-López
,
J.
,
2010
, “
Validation of a Code for Modeling Cavitation Phenomena in Diesel Injector Nozzles
,”
Math. Comput. Modell.
,
52
(
7–8
), pp.
1123
1132
.10.1016/j.mcm.2010.02.027
7.
Tahmasebi
,
E.
,
Lucchini
,
T.
,
D'Errico
,
G.
, and
Onorati
,
A.
,
2015
, “
Numerical Simulation of Diesel Injector Internal Flow Field
,”
70th Conference of the ATI Engineering Association
, E. Procedia, ed., Vol.
82
, Roma, Italy, Sept., pp.
51
58
.
8.
Payri
,
R.
,
Margot
,
X.
, and
Salvador
,
F. J.
,
2002
, “
A Numerical Study of the Influence of Diesel Nozzle Geometry on the Inner Cavitating Flow
,”
SAE
Paper No. 2002-01-0215.10.4271/2002-01-0215
9.
Bicer
,
B.
, and
Sou
,
A.
,
2016
, “
Application of the Improved Cavitation Model to Turbulent Cavitating Flow in Fuel Injector Nozzle
,”
Appl. Math. Modell.
,
40
(
7–8
), pp.
4712
4726
.10.1016/j.apm.2015.11.049
10.
Ahuja
,
V.
,
Hosangadi
,
A.
, and
Arunajatesan
,
S.
,
2001
, “
Simulation of Cavitating Flows Using Hybrid Unstructured Meshes
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
331
339
.10.1115/1.1362671
11.
Yu
,
H.
,
Goldsworthy
,
L.
,
Brandner
,
P. A.
, and
Garaniya
,
V.
,
2017
, “
Development of a Compressible Multiphase Cavitation Approach for Diesel Spray Modelling
,”
Appl. Math. Modell.
,
45
, pp.
705
727
.10.1016/j.apm.2017.01.035
12.
Srinivasan
,
V.
,
Salazar
,
A. J.
, and
Saito
,
K.
,
2009
, “
Numerical Simulation of Cavitation Dynamics Using a Cavitation-Induced-Momentum-Defect (Cimd) Correction Approach
,”
Appl. Math. Modell.
,
33
(
3
), pp.
1529
1559
.10.1016/j.apm.2008.02.005
13.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Yu
,
J.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
14.
Zhao
,
H.
,
Quan
,
S.
,
Dai
,
M.
,
Pomraning
,
E.
,
Senecal
,
P. K.
,
Xue
,
Q.
,
Battistoni
,
M.
, and
Som
,
S.
,
2014
, “
Validation of a Three-Dimensional Internal Nozzle Flow Model Including Automatic Mesh Generation and Cavitation Effects
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p. 092603.10.1115/1.4027193
15.
Desantes
,
J.
,
Garcia-Oliver
,
J. M.
,
Pastor
,
J. M.
,
Pandal
,
A.
,
Baldwin
,
E.
, and
Schmidt
,
D. P.
,
2016
, “
Coupled/Decoupled Spray Simulation of the Ecn Spray: A Condition With the Sigma-y Eulerian Atomization Model
,”
Int. J. Multiphase Flow
,
80
, pp.
89
99
.10.1016/j.ijmultiphaseflow.2015.12.002
16.
Duke
,
D. J.
,
Schmidt
,
D. P.
,
Neroorkar
,
K.
,
Kastengren
,
A. L.
, and
Powell
,
C. F.
,
2013
, “
High Resolution Large Eddy Simulations of Cavitating Gasoline-Ethanol Blends
,”
Int. J. Engine Res.
,
14
(
6
), pp.
578
589
.10.1177/1468087413501824
17.
la Morena
,
J. D.
,
Neroorkar
,
K. D.
,
Plazas
,
A. H.
,
Peterson
,
R. C.
, and
Schmidt
,
D. P.
,
2013
, “
Numerical Analysis of the Influence of Diesel Nozzle Design on the Internal Flow Characteristics of Tilted Injectors
,”
Atom. Sprays
,
23
(
2
), pp.
97
118
.10.1615/AtomizSpr.2013006361
18.
Neroorkar
,
K. D.
, II
, C. E. M.,
Plazas
,
A. H.
,
Grover
,
R. O.
, and
Schmidt
,
D. P.
,
2012
, “
Simulations and Analysis of Fuel Flow in an Injector Including Transient Neddle Effects
,”
ILASS-Americas 24th Annual Conference on Liquid Atomization and Spray Systems
, San Antonio, TX, May.http://www.ilass.org/2/conferencepapers/88.pdf
19.
Schmidt
,
D. P.
,
Rutland
,
C. J.
, and
Corradini
,
M. L.
,
1999
, “
A Fully Compressible, Two-Dimensional Model of Small, High-Speed, Cavitating Nozzles
,”
Atomization Sprays
,
9
(
3
), pp.
255
276
.10.1615/AtomizSpr.v9.i3.20
20.
Trask
,
N.
,
Schmidt
,
D. P.
,
Lightfoot
,
M. D. A.
, and
Danczyk
,
S. A.
,
2012
, “
Compressible Modeling of the Internal Two-Phase Flow in a Gas-Centered Swirl Coaxial Fuel Injector
,”
J. Propul. Power
,
28
(
4
), pp.
685
693
.10.2514/1.B34102
21.
Orley
,
F. M.
,
2016
, “
Numerical Simulation of Cavitating Flows in Diesel Injection Systems
,” Ph.D. thesis, Technische Universitat Munchen, Munich, Germany.
22.
Gopalan
,
S.
, and
Katz
,
J.
,
2000
, “
Flow Structure and Modeling Issues in the Closure Region of Attached Cavitation
,”
Phys. Fluids
,
12
(
4
), pp.
895
911
.10.1063/1.870344
23.
Ducoin
,
A.
,
Huang
,
B.
, and
Young
,
Y. L.
,
2012
, “
Numerical Modeling of Unsteady Cavitating Flows Around a Stationary Hydrofoil
,”
Int. J. Rotating Mach.
,
2012
, pp.
1
17
.10.1155/2012/215678
24.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
,
2000
, “
A Preconditioned Navier–Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
,
29
(
8
), pp.
849
875
.10.1016/S0045-7930(99)00039-0
25.
Merkle
,
C. L.
,
Feng
,
J.
, and
Buelow
,
P. E.
,
1998
, “
Computational Modeling of the Dynamics of Sheet Cavitation
,”
Third International Symposium on Cavitation
, Grenoble, France, Vol.
2
, pp.
47
54
.
26.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Proceedings of the International Conference on Multiphase Flow (ICMF 04)
, Yokohama, Japan, May 30–June 3, Paper No.
152
.https://www.researchgate.net/publication/306205415_A_two-phase_flow_model_for_predicting_cavitation_dynamics
27.
Sauer
,
J.
, and
Schnerr
,
G. H.
,
2000
, “
Unsteady Cavitating Flow—A New Cavitation Model Based on a Modified Front Capturing Method and Bubble Dynamics
,” Proceedings of FEDSM'00 (ASME Fluids Engineering Summer Conference), Boston, MA, June 11–15, Paper No.
FEDSM2000-11095
.https://www.researchgate.net/publication/295743779_Unsteady_cavitating_flow_-_A_new_cavitation_model_based_on_a_modified_front_capturing_method_and_bubble_dynamics
28.
Jiang Jin
,
Z.
,
Xin Gao
,
Z.
,
Yuan Qian
,
J.
,
Wu
,
Z.
, and
Sunden
,
B.
,
2018
, “
A Parametric Study of Hydrodynamic Cavitation Inside Globe Valves
,”
ASME J. Fluids Eng.
,
140
(
3
), p.
031208
. 10.1115/1.4038090
29.
Freudigmann
,
H.-A.
,
Dorr
,
A.
,
Iben
,
U.
, and
Pelz
,
P. F.
,
2017
, “
Modeling of Cavitation-Induced Air Release Phenomena in Micro-Orifice Flows
,”
ASME J. Fluids Eng.
,
139
(
11
), p.
111301
.10.1115/1.4037048
30.
Coussirat
,
M.
,
Moll
,
F.
,
Cappa
,
F.
, and
Fontanals
,
A.
,
2016
, “
Study of Available Turbulence and Cavitation Models to Reproduce Flow Patterns in Confined Flows
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091304
.10.1115/1.4033372
31.
Le
,
Q. D.
,
Mereu
,
R.
,
Besagni
,
G.
,
Dossena
,
V.
, and
Inzoli
,
F.
,
2018
, “
Computational Fluid Dynamics Modeling of Flashing Flow in Convergent-Divergent Nozzle
,”
ASME J. Fluids Eng.
,
140
(
10
), p.
101102
.10.1115/1.4039908
32.
Morgut
,
M.
,
Nobile
,
E.
, and
Bilus
,
I.
,
2011
, “
Comparison of Mass Transfer Models for the Numerical Prediction of Sheet Cavitation Around a Hydrofoil
,”
Int. J. Multiphase Flow
,
37
(
6
), pp.
620
626
.10.1016/j.ijmultiphaseflow.2011.03.005
33.
Zhou
,
H.
,
Xiang
,
M.
,
Okolo
,
P. N.
,
Wu
,
Z.
,
Bennett
,
G. J.
, and
Zhang
,
W.
,
2019
, “
An Efficient Calibration Approach for Cavitation Model Constants Based on Openfoam Platform
,”
J. Mar. Sci. Technol.
,
24
(
4
), pp.
1043
1056
.10.1007/s00773-018-0604-9
34.
Kinzel
,
M. P.
,
Lindau
,
J. W.
, and
Kunz
,
R. F.
,
2017
, “
A Unified Homogenous Multiphase CFD Model for Cavitation
,”
ASME
Paper No. FEDSM2017-69363.10.1115/FEDSM2017-69363
35.
Kinzel
,
M. P.
,
Lindau
,
J. W.
, and
Kunz
,
R. F.
,
2019
, “
An Assessment of Cfd Cavitation Models Using Bubble Growth Theory and Bubble Transport Modeling
,”
ASME J. Fluids Eng.
,
141
(
4
), p.
041301
.10.1115/1.4042421
36.
OpenFOAM,
2016
,
OpenFOAM User Guide
,
CFD Direct
.
37.
Bicer
,
B.
,
2016
, “
Numerical Simulation of Cavitation Phenomena Inside Fuel Injector Nozzles
,” Ph.D. thesis,
Kobe University
, Kobe, Japan.
38.
Rayleigh
,
L.
,
1917
, “
On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
34
(
200
), pp.
94
98
.10.1080/14786440808635681
39.
Noltingk
,
B.
, and
Neppiras
,
E.
,
1950
, “
Cavitation Produced by Ultrasonics
,”
Proc. Phys. Soc. London Sec.
,
63
(
9
), pp.
674
685
.10.1088/0370-1301/63/9/305
40.
Poritsky
,
H.
,
1952
, “
The Collapse or Growth of a Sperical Bubble or Cavity in a Viscous Fluid
,”
Proceedings of the First U.S. National Congress on Applied
Mechanics (ed) E. Sternberg (Am. Soc. Mech. Eng., New York), Chicago, IL, June, pp.
813
821
.
41.
Plesset
,
M.
,
1949
, “
The Dynamics of Cavitation Bubbles
,”
J. Appl. Mech.
,
16
(
277
).
42.
Holland
,
C. K.
, and
Apfel
,
R. E.
,
1989
, “
An Improved Theory for the Prediction of Microcavitation Thresholds
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
,
36
(
2
), pp.
204
208
.10.1109/58.19152
43.
Apfel
,
R. E.
,
1981
, “
Acoustic Cavitation Prediction
,”
J. Acoust. Soc. Am.
,
69
(
6
), pp.
1624
1633
.10.1121/1.385939
44.
Blake
,
F.
,
1949
, “
The Onset of Cavitation in Liquids I: Cavitation Threshold Sound Pressures in Water as a Function of Temperature and Hydrostatic Pressure
,” Acoustics Research Laboratory, Harvard University, Cambridge, MA, Technical Memorandum No. 12.
45.
Villafranco
,
D. O.
,
Do
,
H. K.
,
Grace
,
S. M.
,
Ryan
,
E. M.
, and
Holt
,
R. G.
,
2018
, “
Assessment of Cavitation Models in the Prediction of Cavitation in Nozzle Flow
,”
ASME
Paper No. FEDSM-2018-83223
.10.1115/FEDSM2018-83223
46.
Roache
,
P. J.
,
1994
, “Perspective:
A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME. J. Fluids Eng.
, 116(3), pp. 405–413. 10.1115/1.2910291
47.
Celik
,
I.
, and
Karatekin
,
O.
,
1997
, “
Numerical Experiments on Application of Richardson Extrapolation With Nonuniform Grids
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
584
590
.10.1115/1.2819284
48.
Do
,
H. K.
,
2018
, “Cavitation Detection and Characterization for Small Scale Nozzles and Fuel Injectors,” Master's thesis, Boston University, Boston, MA.
49.
Flynn
,
H.
,
1964
,
Physics of Acoustic Cavitation in Liquids
(Physical Acoustics, Vol.
1B
),
Academic Press
,
New York
.
50.
Atchley
,
A. A.
, and
Prosperetti
,
A.
,
1989
, “
The Crevice Model of Bubble Nucleation
,”
J. Acoust. Soc. Am.
,
86
(
3
), pp.
1065
1084
.10.1121/1.398098
51.
Yilmaz
,
E.
,
Hammitt
,
F. G.
, and
Keller
,
A.
,
1976
, “
Cavitation Inception Thresholds in Water and Nuclei Spectra by Light-Scattering Technique
,”
J. Acoust. Soc. Am.
,
59
(
2
), pp.
329
338
.10.1121/1.380867
52.
Yuan
,
W.
,
Sauer
,
J.
, and
Schnerr
,
G. H.
,
2001
, “
Modeling and Computation of Unsteady Cavitation Flows in Injection Nozzles
,”
Mec. Ind.
,
2
(
5
), pp.
383
394
.10.1016/S1296-2139(01)01120-4
53.
Payri
,
R.
,
Salvador
,
F. J.
,
García
,
A.
, and
Gil
,
A.
,
2012
, “
Combination of Visualization Techniques for the Analysis of Evaporating Diesel Sprays
,”
Energy Fuels
,
26
(
9
), pp.
5481
5490
.10.1021/ef3008823
You do not currently have access to this content.