Abstract

A computational study based on unsteady Reynolds-averaged Navier–Stokes that resolves the gas–liquid interface was performed to examine the unsteady multiphase flow in a liquid-ring pump as a function of its inlet pressure (10, 40, and 80 kPa) and its impeller's rotational speed (1150, 1450, and 1750 rpm). Results obtained show the shape of the liquid ring to play a critical role in creating the expansion ratio needed to draw air into the pump and the compression ratio needed to expel air out of the pump. The dominant processes that determine the shape of the liquid ring was found to be the centrifugal force from rotation, the acceleration and deceleration due to the difference in pressure at the pump's inlet and outlet, and the eccentricity of the impeller relative to the pump's housing. Results are presented to show how the rotational speed of the impeller and the pressure at the pump's inlet affect the nature of the multiphase flow in the pump as well as the pump's effectiveness in creating a vacuum. The effects of heat transfer on the gas phase during the compression and expansion processes were found to be approximated well by polytropic processes. This computational study was validated by comparing computed with measured volumetric flowrates ingested through the suction port and the torque exerted on the pump's impeller.

References

References
1.
Hashemi
,
S. J.
,
Crotogino
,
R. H.
, and
Douglas
,
W. J. M.
,
1997
, “
Effect of Papermaking Parameters on Through Drying of Semi-Permeable Paper
,”
Drying Technol.
,
15
(
2
), pp.
371
397
.10.1080/07373939708917238
2.
Rey
,
L.
, and
May
,
J. C.
,
2004
, “
Freeze-Drying/Lyophilization of Pharmaceutical & Biological Products
,”
Revised and Expanded
, L. Rey (ed.),
CRC Press
,
Boca Raton, FL
.
3.
Ying
,
Y. H. S. H. L.
, and
Qiuzhou
,
J. W. F.
,
2004
, “
Progress of Moulding Technology of Resin-Matrix Composite/Foam Plastic Sandwich
,”
Aerosp. Mater. Technol.
,
34
(
1
), pp.
12
15
.
4.
Namba
,
S.
,
1981
, “
Ion Implantation in Semiconductor Processing
,”
Nucl. Instrum. Methods Phys. Res.
,
189
(
1
), pp.
175
182
.10.1016/0029-554X(81)90142-7
5.
Madou
,
M. J.
,
2011
,
Manufacturing Techniques for Microfabrication and Nanotechnology
,
CRC Press
,
Boca Raton, FL
.
6.
Baldwin
,
D. J.
, and
Rowe
,
G. W.
,
1961
, “
Lubrication at High Temperatures With Vapor-Deposited Surface Coatings
,”
ASME J. Basic Eng.
,
83
(
2
), pp.
133
138
.10.1115/1.3658903
7.
Von Halle
,
E. D.
,
Wood
,
H. G.
, III
, and
Lowry
,
R. A.
,
1983
, “
The Effect of Vacuum Core Boundary Conditions on Separation in the Gas Centrifuge
,”
Nucl. Technol.
,
62
(
3
), pp.
325
334
.10.13182/NT83-A33256
8.
Havet
,
M.
, and
Hennequin
,
F.
,
1999
, “
Experimental Characterization of the Ambience in a Food-Processing Clean Room
,”
J. Food Eng.
,
39
(
3
), pp.
329
335
.10.1016/S0260-8774(99)00024-2
9.
Behnsen
,
H.
,
2008
, “
Underground Repositories for Chemically Toxic Waste in German Salt and Potash Mines
,”
Rev. Eng. Geol.
,
19
, p.
31
.10.1130/2008.4119(04)
10.
Hong
,
S.
, and
Son
,
G.
,
2017
, “
Numerical Study of a Vane Vacuum Pump With Two-Phase Flows
,”
J. Mech. Sci. Technol.
,
31
(
7
), pp.
3329
3335
.10.1007/s12206-017-0623-1
11.
Harris
,
R. M.
,
Edge
,
K. A.
, and
Tilley
,
D. G.
,
1994
, “
The Suction Dynamics of Positive Displacement Axial Piston Pumps
,”
ASME J. Dyn. Syst. Meas. Contr.
,
116
(
2
), pp.
281
287
.10.1115/1.2899221
12.
Kovacevic
,
A.
,
Stosic
,
N.
,
Mujic
,
E.
, and
Smith
,
I. K.
,
2007
, “
CFD Integrated Design of Screw Compressors
,”
Eng. Appl. Comput. Fluid Mech.
,
1
(
2
), pp.
96
108
.10.1080/19942060.2007.11015185
13.
Wang
,
J.
,
Zha
,
H.
,
McDonough
,
J. M.
, and
Zhang
,
D.
,
2015
, “
Analysis and Numerical Simulation of a Novel Gas–Liquid Multiphase Scroll Pump
,”
Int. J. Heat Mass Transfer
,
91
, pp.
27
36
.10.1016/j.ijheatmasstransfer.2015.07.086
14.
Cui
,
M. M.
,
2006
, “
Numerical Study of Unsteady Flows in a Scroll Compressor
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
947
955
.10.1115/1.2243300
15.
Huang
,
S.
,
Ruan
,
Z. Y.
,
Deng
,
Q. J.
,
Wu
,
T. Z.
, and
Tan
,
Z. H.
,
2009
, “
Numerical Analysis of Gas-Liquid Two-Phase Flow in Liquid-Ring Vacuum Pump
,”
Vacuum
,
2
, pp.
49
52
.http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZKZK200902026.htm
16.
Guan
,
J.
, and
Huang
,
S.
,
2010
, “
Property Analysis of the Two-Phase Flow of Liquid-Ring Vacuum Pumps Based on Computational Fluid Dynamics (CFD)
,”
Chem. Eng. Mach.
,
6
, p.
21
.http://en.cnki.com.cn/Article_en/CJFDTOTAL-HGJX201006021.htm
17.
Grunow
,
I.
,
Salecker
,
U.
,
Bartsch
,
P.
, and
Grohmann
,
T.
,
2011
,
Analysis of Cavitating Flow in a Liquid Ring Vacuum Pump
,
Technical Study by CFX-Berlin
.
18.
Kakuda
,
K.
,
Ushiyama
,
Y.
,
Obara
,
S.
,
Toyotani
,
J.
,
Matsuda
,
S.
,
Tanaka
,
H.
, and
Katagiri
,
K.
,
2010
, “
Flow Simulations in a Liquid Ring Pump Using a Particle Method
,”
Comput. Model. Eng. Sci. (CMES)
,
66
(
3
), pp.
215
–226.https://www.researchgate.net/publication/289908457_Flow_Simulations_in_a_Liquid_Ring_Pump_Using_a_Particle_Method
19.
Radle
,
M.
, and
Shome
,
B.
,
2013
, “
Cavitation Prediction in Liquid Ring Pump for Aircraft Fuel Systems by CFD Approach
,”
SAE
Paper No. 2013-01-2238.10.4271/2013-01-2238
20.
Ding
,
H.
,
Jiang
,
Y.
,
Wu
,
H.
, and
Wang
,
J.
,
2015
, “
Two Phase Flow Simulation of Water Ring Vacuum Pump Using VOF Model
,”
ASME
Paper No. AJKFluids2015-33654.10.1115/AJKFluids2015-33654
21.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul. Heat Mass Transfer
,
4
(
1
), pp.
625
–632.https://www.researchgate.net/publication/228742295_Ten_years_of_industrial_experience_with_the_SST_turbulence_model
22.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
You do not currently have access to this content.