Abstract

A simple mathematical model of fluid flow is applied to determine the cross-sectional shape of a coaxial ground heat exchanger (CGHE) for which the friction pressure drop is minimal. Both laminar and turbulent flows of a Newtonian fluid are analyzed. The dimensionless form of the friction pressure losses is taken as the objective function, and the dimensionless internal diameter and wall thickness of the inner tube is adopted as decision variables, with the reference length taken to be the internal diameter of the external pipe. The resulting optimization problem is solved by means of a hybrid analytical-numerical method. The obtained solutions are generalized as two simple equations valid for laminar and turbulent flows, respectively. It is shown that the pressure losses in a coaxial ground heat exchanger with optimal cross section may be considerably smaller than the pressure losses for a nonoptimal one. The obtained results are significant for the global optimization of CGHEs, resulting in improved energy conservation of buildings and district heating systems.

References

1.
Ma
,
L.
,
Zhao
,
Y.
,
Yin
,
H.
,
Zhao
,
J.
,
Li
,
W.
, and
Wang
,
H.
,
2020
, “
A Coupled Heat Transfer Model of Medium-Depth Downhole Coaxial Heat Exchanger Based on the Piecewise Analytical Solution
,”
Energy Convers. Manage.
,
204
, p.
112308
.10.1016/j.enconman.2019.112308
2.
Jalaluddin,
Miyara
,
A.
,
Tsubaki
,
K.
,
Inoue
,
S.
, and
Yoshida
,
K.
,
2011
, “
Experimental Study of Several Types of Ground Heat Exchanger Using a Steel Pile Foundation
,”
Renewable Energy
,
36
, pp.
764
771
.10.1016/j.renene.2010.08.011
3.
Holmberg
,
H.
,
Acuna
,
J.
,
Næss
,
E.
, and
Sønju
,
O. K.
,
2016
, “
Thermal Evaluation of Coaxial Deep Borehole Heat Exchangers
,”
Renewable Energy
,
97
, pp.
65
76
.10.1016/j.renene.2016.05.048
4.
Oh
,
K.
,
Lee
,
S.
,
Park
,
S.
,
Han
,
S.-I.
, and
Choi
,
H.
,
2019
, “
Field Experiment on Heat Exchange Performance of Various Coaxial Type Ground Heat Exchangers Considering Construction Conditions
,”
Renewable Energy
,
144
, pp.
84
96
.10.1016/j.renene.2018.10.078
5.
Huang
,
Y.
,
Zhang
,
Y.
,
Xie
,
Y.
,
Zhang
,
Y.
, and
Gao
,
X.
,
2020
, “
Thermal Performance Analysis on the Composition Attributes of Deep Coaxial Borehole Heat Exchanger for Building Heating
,”
Energy Build.
,
221
, pp.
1
13
.10.1016/j.enbuild.2020.110019
6.
Pan
,
A.
,
Lu
,
L.
,
Cui
,
P.
, and
Jia
,
L.
,
2019
, “
A New Analytical Heat Transfer Model for Deep Borehole Heat Exchangers With Coaxial Tubes
,”
Int. J. Heat Mass Transfer
,
141
, pp.
1056
1065
.10.1016/j.ijheatmasstransfer.2019.07.041
7.
Liu
,
J.
,
Wang
,
F.
,
Cai
,
W.
,
Wang
,
Z.
,
Wei
,
O.
, and
Deng
,
J.
,
2019
, “
Numerical Study on the Effects of Design Parameters on the Heat Transfer Performance of Coaxial Deep Borehole Heat Exchanger
,”
Int. J. Energy Res.
,
43
(
12
), pp.
6337
6352
.10.1002/er.4357
8.
Kujawa
,
T.
,
Nowak
,
W.
, and
Stachel
,
A. A.
,
2006
, “
Utilization of Existing Deep Geological Wells for Acquisitions of Geothermal Energy
,”
Energy
,
31
(
5
), pp.
650
664
.10.1016/j.energy.2005.05.002
9.
Składzień
,
J.
, Hanuszkiewicz-Drapala, M
.
, and
Fic
,
A.
,
2006
, “
Thermal Analysis of Vertical Ground Exchangers of Heat Pump
,”
Heat Transfer Eng.
,
27
(
2
), pp.
2
13
.10.1080/01457630500397088
10.
Nian
,
Y.-L.
, and
Cheng
,
W.-L.
,
2018
, “
Insights Into Geothermal Utilization of Abandoned Oil and Gas Wells
,”
Renewable Sustainable Energy Rev.
,
87
, pp.
44
60
.10.1016/j.rser.2018.02.004
11.
Beier
,
R. A.
,
Acuña
,
J.
,
Mogensen
,
P.
, and
Palm
,
B.
,
2014
, “
Transient Heat Transfer in a Coaxial Borehole Heat Exchanger
,”
Geothermics
,
51
, pp.
470
482
.10.1016/j.geothermics.2014.02.006
12.
Tago
,
M.
,
Morita
,
K.
,
Sugawara
,
M.
, and
Fujita
,
T.
,
2005
, “
Heat Extraction Characteristics by Coaxial Heat Exchanger
,”
Heat Transfer—Asian Res.
,
34
(
7
), pp.
496
513
.10.1002/htj.20083
13.
Zanchini
,
E.
,
Lazzari
,
S.
, and
Priarone
,
A.
,
2010
, “
Improving the Thermal Performance of Coaxial Borehole Heat Exchangers
,”
Energy
,
35
(
2
), pp.
657
666
.10.1016/j.energy.2009.10.038
14.
Liu
,
J.
,
Wang
,
F.
,
Gao
,
Y.
,
Zhang
,
Y.
,
Cai
,
W.
,
Wang
,
M.
, and
Wang
,
Z.
,
2020
, “
Influencing Factors Analysis and Operation Optimization for the Long-Term Performance of Medium-Deep Borehole Heat Exchanger Coupled Ground Source Heat Pump System
,”
Energy Build.
,
226
, p.
110385
.10.1016/j.enbuild.2020.110385
15.
Bauer
,
D.
,
Heidemann
,
W.
,
Muller-Steinhagen
,
H.
, and
Diersch
,
H.-J. G.
,
2011
, “
Thermal Resistance and Capacity Models for Borehole Heat Exchangers
,”
Int. J. Energy Res.
,
35
(
4
), pp.
312
320
.10.1002/er.1689
16.
Liu
,
L.
,
Yu
,
Y.
,
Zhao
,
Y.
, and
Sun
,
F.
,
2020
, “
The Design and Analysis of a Coaxial Casing Heat Exchanger Used in Geothermal Energy Systems
,”
Energy Sources, Part A: Recovery, Utilization, Environ. Eff.,
Taylor & Francis Online, pp.
1
17
.10.1080/15567036.2020.1832164
17.
Beavers
,
G. S.
,
Sparrow
,
E. M.
, and
Magnuson
,
R. A.
,
1970
, “
Experiments on the Breakdown of Laminar Flow in a Parallel–Plate Channel
,”
Int. J. Heat Mass Transfer
,
13
(
5
), pp.
809
815
.10.1016/0017-9310(70)90127-4
18.
Idelchik
,
I. E.
,
1996
,
Handbook of Hydraulic Resistance
, 3rd ed.,
Begell House
,
New York
. https://www.academia.edu/34052675/HANDBOOK_OF_HYDRAULIC_RESISTANCE_3rd_Edition
You do not currently have access to this content.