Abstract

Tip clearance in hydraulic machines may complicate the fluid–structure interaction (FSI) effects. In this investigation, a mode-based approach (modal work) is evaluated and employed to quantitatively predict the added mass, added stiffness, and hydrodynamic damping ratio, in relation to the first-order bending mode of a vibrating hydrofoil. The investigated relative tip clearance ranges from 0.067% to 2% of the span length. The predicted vortex shedding frequency, natural frequency, and hydrodynamic damping ratio of the hydrofoil are in good agreement with the previously published experimental results, with relative deviations within 9.92%, 6.97%, and 11.23%, respectively. Simulation results show that the added mass, added stiffness, and hydrodynamic damping ratio increase inversely as the tip clearance increases. In particular, as the relative tip clearance increases from 0.067% to 2%, the added mass in still water, the added stiffness, and hydrodynamic damping ratio at a velocity of 10 m/s decrease by 18.66%, 9.36%, and 27.99%, respectively. As the tip clearance increases, the inversely increased pressure difference between the upper and lower surfaces of the vibrating hydrofoil is the main reason for the inversely increased hydrodynamic damping ratio. This is due to the energy leakages via the tip clearance region increase as the tip clearance increases, which may cause less fluid force to resist the vibration of the hydrofoil, resulting in less negative modal work done by the fluid load on the hydrofoil.

References

1.
Seeley
,
C.
,
Coutu
,
A.
,
Monette
,
C.
,
Nennemann
,
B.
, and
Marmont
,
H.
,
2012
, “
Characterization of Hydrofoil Damping Due to Fluid-Structure Interaction Using Piezocomposite Actuators
,”
Smart Mater. Struct.
,
21
(
3
), pp.
35027
35035
10.1088/0964-1726/21/3/035027
2.
Yao
,
Z. F.
,
Wang
,
F. J.
,
Dreyer
,
M.
, and
Farhat
,
M.
,
2014
, “
Effect of Trailing Edge Shape on Hydrodynamic Damping for a Hydrofoil
,”
J. Fluids Struct.
,
51
, pp.
189
198
.10.1016/j.jfluidstructs.2014.09.003
3.
Bergan
,
C. W.
,
Tengs
,
E. O.
,
Solemslie
,
B. W.
, and
Dahlhaug
,
O. G.
,
2019
, “
An Experimental Investigation of the Hydrodynamic Damping of Vibrating Hydrofoils
,”
IOP Conf. Ser. Earth Environ. Sci.
,
240
(
6
), p.
062008
.10.1088/1755-1315/240/6/062008
4.
Gauthier
,
J. P.
,
Giroux
,
A. M.
,
Etienne
,
S.
, and
Gosselin
,
F. P.
,
2017
, “
A Numerical Method for the Determination of Flow-Induced Damping in Hydroelectric Turbines
,”
J. Fluids Struct.
,
69
, pp.
341
354
.10.1016/j.jfluidstructs.2017.01.004
5.
Bergan
,
C. W.
,
Solemslie
,
B. S.
,
Østby
,
P.
, and
Dahlhaug
,
O. G.
,
2018
, “
Hydrodynamic Damping of a Fluttering Hydrofoil in High-Speed Flows
,”
Int. J. Fluid Mach. Syst.
,
11
(
2
), pp.
146
153
.10.5293/IJFMS.2018.11.2.146
6.
Liang
,
Q. W.
,
Rodriguez
,
C. G.
,
Egusquiza
,
E.
,
Escaler
,
X.
,
Farhat
,
M.
, and
Avellan
,
F.
,
2007
, “
Numerical Simulation of Fluid Added Mass Effect on a Francis Turbine Runner
,”
Comput. Fluids
,
36
(
6
), pp.
1106
1118
.10.1016/j.compfluid.2006.08.007
7.
Liaghat
,
T.
,
Guibault
,
F.
,
Allenbach
,
L.
, and
Nennemann
,
B.
,
2014
, “
Two-Way Fluid-Structure Coupling in Vibration and Damping Analysis of an Oscillating Hydrofoil
,”
ASME
Paper No. IMECE2014-38441.10.1115/IMECE2014-38441
8.
Zeng
,
Y. S.
,
Yao
,
Z. F.
,
Gao
,
J. Y.
,
Hong
,
Y. P.
,
Wang
,
F. J.
, and
Zhang
,
F.
,
2019
, “
Numerical Investigation of Added Mass and Hydrodynamic Damping on a Blunt Trailing Edge Hydrofoil
,”
ASME J. Fluids Eng.
,
141
(
8
), p.
081108
.10.1115/1.4042759
9.
Monette
,
C.
,
Nennemann
,
B.
,
Seeley
,
C.
,
Coutu
,
A.
, and
Marmont
,
H.
,
2014
, “
Hydro-Dynamic Damping Theory in Flowing Water
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(
3
), p.
032044
.10.1088/1755-1315/22/3/032044
10.
Nennemann
,
B.
,
Monette
,
C.
, and
Chamberland-Lauzon
,
J.
,
2016
, “
Hydrodynamic Damping and Stiffness Prediction in Francis Turbine Runners Using CFD
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
(
7
), p.
072006
.10.1088/1755-1315/49/7/072006
11.
Tengs
,
E. O.
,
Bergan
,
C. W.
,
Jakobsen
,
K.
, and
Storli
,
P. T.
,
2019
, “
Numerical Simulation of the Hydrodynamic Damping of a Vibrating Hydrofoil
,”
IOP Conf. Ser. Earth Environ. Sci.
,
240
(
6
), p.
062002
.10.1088/1755-1315/240/6/062002
12.
Rodriguez
,
C. G.
,
Flores
,
P.
,
Pierart
,
F. G.
,
Contzen
,
L. R.
, and
Egusquiza
,
E.
,
2012
, “
Capability of Structural–Acoustical FSI Numerical Model to Predict Natural Frequencies of Submerged Structures With Nearby Rigid Surfaces
,”
Comput. Fluids
,
64
, pp.
117
126
.10.1016/j.compfluid.2012.05.011
13.
He
,
L.
,
Zhou
,
L.
,
Ahn
,
S. H.
,
Wang
,
Z.
,
Nakahara
,
Y.
, and
Kurosawa
,
S.
,
2019
, “
Evaluation of Gap Influence on the Dynamic Response Behavior of Pump-Turbine Runner
,”
Eng. Comput.
,
36
(
2
), pp.
491
508
.10.1108/EC-04-2018-0169
14.
Torre
,
O. D. L.
,
Escaler
,
X.
,
Egusquiza
,
E.
, and
Farhat
,
M.
,
2014
, “
Numerical and Experimental Study of a Nearby Solid Boundary and Partial Submergence Effects on Hydrofoil Added Mass
,”
Comput. Fluids
,
91
(
7
), pp.
1
9
.10.1016/j.compfluid.2013.12.003
15.
Askari
,
E.
,
Jeong
,
K. H.
, and
Amabili
,
M.
,
2013
, “
Hydroelastic Vibration of Circular Plates Immersed in a Liquid-Filled Container With Free Surface
,”
J. Sound Vib.
,
332
(
12
), pp.
3064
3085
.10.1016/j.jsv.2013.01.007
16.
Basak
,
S.
,
Raman
,
A.
, and
Garimella
,
S. V.
,
2006
, “
Hydrodynamic Loading of Microcantilevers Vibrating in Viscous Fluids
,”
J. Appl. Phys.
,
99
(
11
), p.
114906
.10.1063/1.2202232
17.
Xiu
,
H. N.
,
Davis
,
R. B.
, and
Romeo
,
R. C.
,
2018
, “
Edge Clearance Effects on the Added Mass and Damping of Beams Submerged in Viscous Fluids
,”
J. Fluids Struct.
,
83
, pp.
194
217
.10.1016/j.jfluidstructs.2018.08.016
18.
Harrison
,
C.
,
Tavernier
,
E.
,
Vancauwenberghe
,
O.
,
Donzier
,
E.
,
Hsu
,
K.
,
Goodwin
,
A. R. H.
,
Marty
,
F.
, and
Mercier
,
B.
,
2007
, “
On the Response of a Resonating Plate in a Liquid Near a Solid Wall
,”
Sens. Actuators A: Phys.
,
134
(
2
), pp.
414
426
.10.1016/j.sna.2006.06.023
19.
Valentín
,
D.
,
Presas
,
A.
,
Egusquiza
,
E.
, and
Valero
,
C.
,
2014
, “
Experimental Study on the Added Mass and Damping of a Disk Submerged in a Partially Fluid-Filled Tank With Small Radial Confinement
,”
J. Fluids Struct.
,
50
, pp.
1
17
.10.1016/j.jfluidstructs.2014.06.006
20.
Xu
,
Y.
,
Tan
,
L.
,
Liu
,
Y.
, and
Cao
,
S.
,
2017
, “
Pressure Fluctuation and Flow Pattern of a Mixed-Flow Pump With Different Blade Tip Clearances Under Cavitation Condition
,”
Adv. Mech. Eng.
,
9
(
4
), pp.
1
12
.10.1177/1687814017696227
21.
Naik
,
T.
,
Longmire
,
E. K.
, and
Mantell
,
S. C.
,
2003
, “
Dynamic Response of a Cantilever in Liquid Near a Solid Wall
,”
Sens. Actuators A: Phys.
,
102
(
3
), pp.
240
254
.10.1016/S0924-4247(02)00398-9
22.
Trivedi
,
C.
,
2017
, “
A Review on Fluid Structure Interaction in Hydraulic Turbines: A Focus on Hydrodynamic Damping
,”
Eng. Failure Anal.
,
77
, pp.
1
22
.10.1016/j.engfailanal.2017.02.021
23.
Langtry
,
R. B.
,
Menter
,
F. R.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables - Part II: Test Cases and Industrial Applications
,”
ASME J. Turbomach.
,
128
(
3
), pp.
423
434
.10.1115/1.2184353
24.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.10.1080/10618560902773387
25.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA. J.
,
47
(
12
), pp.
2894
2906
.10.2514/1.42362
26.
Čupr
,
P.
,
Štefan
,
D.
,
Habán
,
V.
, and
Rudolf
,
P.
,
2019
, “
FSI Analysis of Francis-99 Hydrofoil Employing SBES Model to Adequately Predict Vortex Shedding
,”
J. Phys. Conf. Ser.
,
1296
(
1
), p.
012002
.10.1088/1742-6596/1296/1/012002
27.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
28.
Ausoni
,
P.
,
2009
, “
Turbulent Vortex Shedding From a Blunt Trailing Edge Hydrofoil
,” Ph.D. dissertation,
Swiss Federal Institute of Technology Lausanne
, Lausanne, Switzerland.
29.
Roth
,
S.
,
Calmon
,
M.
,
Farhat
,
M.
,
Muench
,
C.
,
Huebner
,
B.
, and
Avellan
,
F.
,
2009
, “
Hydrodynamic Damping Identification From an Impulse Response of a Vibration Blade
,”
Third IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
, Brno, Czech Republic, Oct. 14–16, pp.
253
260
.https://www.researchgate.net/publication/41940274_Hydrodynamic_Damping_Identification_from_an_Impulse_Response_of_a_Vibrating_Blade
30.
Bergan
,
C. W.
,
Tengs
,
E. O.
,
Solemslie
,
B. W.
,
Stby
,
P.
, and
Dahlhaug
,
O. G.
,
2019
, “
Damping Measurements on a Multi-Blade Cascade With Multiple Degrees of Freedom: A Francis-99 Test Case
,”
J. Phys. Conf. Ser.
,
1296
, p.
012003
.10.1088/1742-6596/1296/1/012003
You do not currently have access to this content.