Abstract

Fluid loading within an intracranial aneurysm is difficult to measure but can be related to the shape of the flow passage. The outcome of excessive loading is a fatal hemorrhage, making it necessary for early diagnosis. However, arterial diseases are asymptomatic and clinical assessment is a challenge. A realistic approach to examining the severity of wall loading is from the morphology of the aneurysm itself. Accordingly, this study compares pulsatile flow (Reynolds number Re = 426, Womersley number Wo = 4.7) in three different intracranial aneurysm geometries. Specifically, the spatio-temporal movement of vortices is followed in high aspect ratio aneurysm models whose domes are inclined along with angles of 0, 45, and 90 deg relative to the plane of the parent artery. The study is based on finite volume simulation of unsteady three-dimensional flow while a limited set of particle image velocimetry experiments have been carried out. Within a pulsatile cycle, an increase in inclination (0–90 deg) is seen to shift the point of impingement from the distal end toward the aneurysmal apex. This change in flow pattern strengthens helicity, drifts vortex cores, enhances spatial displacement of the vortex, and generates skewed Dean's vortices on transverse planes. Patches of wall shear stress and wall pressure shift spatially from the distal end in models of low inclination (0–45 deg) and circumscribe the aneurysmal wall for an inclination angle of 90 deg. Accordingly, it is concluded that high angles of inclination increase rupture risks while lower inclinations are comparatively safe.

References

1.
Wiebers
,
D. O.
,
2003
, “
Unruptured Intracranial Aneurysms: Natural History, Clinical Outcome, and Risks of Surgical and Endovascular Treatment
,”
Lancet
,
362
(
9378
), pp.
103
110
.10.1016/S0140-6736(03)13860-3
2.
Kirkpatrick
,
P. J.
,
2002
, “
Subarachnoid Haemorrhage and Intracranial Aneurysms: What Neurologists Need to Know
,”
Neurosurgery Psychiatry
,
73
(
1
), pp.
28
33
.10.1136/jnnp.73.suppl_1.i28
3.
Kaminogo
,
M.
,
Yonekura
,
M.
, and
Shibata
,
S.
,
2003
, “
Incidence and Outcome of Multiple Intracranial Aneurysms in a Defined Population
,”
Stroke
,
34
(
1
), pp.
16
21
.10.1161/01.STR.0000046763.48330.AD
4.
Keedy
,
A.
,
2006
, “
An Overview of Intracranial Aneurysms
,”
McGill J. Med.:MJM
,
9
(
2
), pp.
141
141
.10.26443/mjm.v9i2.672
5.
Xu
,
Z.
,
Rui
,
Y.-N.
,
Hagan
,
J. P.
, and
Kim
,
D. H.
,
2019
, “
Intracranial Aneurysms: Pathology, Genetics, and Molecular Mechanisms
,”
NeuroMolecular Med.
,
21
(
4
), pp.
325
343
.10.1007/s12017-019-08537-7
6.
Massoud
,
T. F.
,
Guglielmi
,
G.
,
Ji
,
C.
,
ViUela
,
F.
, and
Duckwiler
,
G. R.
,
1994
, “
Experimental Saccular Aneurysms I. Review of Surgically Constructed Models and Their Laboratory Applications
,”
Neuroradiology
,
36
(
7
), pp.
537
546
.10.1007/BF00593517
7.
Rayz
,
V. L.
,
Boussel
,
L.
,
Acevedo-Bolton
,
G.
,
Martin
,
A. J.
,
Young
,
W. L.
,
Lawton
,
M. T.
,
Hi-Gashida
,
R.
, and
Saloner
,
D.
,
2008
, “
Numerical Simulations of Flow in Cerebral Aneurysms: Comparison of CFD Results and In Vivo MRI Measurements
,”
ASME J. Biomech. Eng.
,
130
(
5
), p.
051011
.10.1115/1.2970056
8.
Meng
,
H.
,
Tutino
,
V. M.
,
Xiang
,
J.
, and
Siddiqui
,
A.
,
2014
, “
High WSS or Low WSS? Complex Interactions of Hemodynamics With Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis
,”
Am. J. Neuroradiol.
,
35
(
7
), pp.
1254
1262
.10.3174/ajnr.A3558
9.
Rinkel
,
G. J. E.
,
Djibuti
,
M.
,
Algra
,
A.
, and
van Gijn
,
J.
,
1998
, “
Prevalence and Risk of Rupture of Intracranial Aneurysms
,”
Stroke
,
29
(
1
), pp.
251
256
.10.1161/01.STR.29.1.251
10.
Ujiie
,
H.
,
Tachi
,
H.
,
Hiramatsu
,
O.
,
Hazel
,
A. L.
,
Matsumoto
,
T.
,
Ogasawara
,
Y.
,
Nakajima
,
H.
,
Hori
,
T.
,
Takakura
,
K.
, and
Kajiya
,
F.
,
1999
, “
Effects of Size and Shape (Aspect Ratio) on the Hemodynamics of Saccular Aneurysms: A Possible Index for Surgical Treatment of Intracranial Aneurysms
,”
Neurosurgery
,
45
(
1
), pp.
119
130
.10.1097/00006123-199907000-00028
11.
Takagi
,
K.
,
Tamura
,
A.
,
Nakagomi
,
T.
,
Nakayama
,
H.
,
Gotoh
,
O.
,
Kawai
,
K.
,
Taneda
,
M.
,
Yasui
,
N.
,
Hadeishi
,
H.
, and
Sano
,
K.
,
1999
, “
How Should a Subarachnoid Hemorrhage Grading Scale Be Determined? A Combinatorial Approach Based Solely on the Glasgow Coma Scale
,”
J. Neurosurg.
,
90
(
4
), pp.
680
687
.10.3171/jns.1999.90.4.0680
12.
Sforza
,
D. M.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
,
2009
, “
Hemodynamics of Cerebral Aneurysms
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
91
107
.10.1146/annurev.fluid.40.111406.102126
13.
Shojima
,
M.
,
Oshima
,
M.
,
Takagi
,
K.
,
Torii
,
R.
,
Hayakawa
,
M.
,
Katada
,
K.
,
Morita
,
A.
, and
Kirino
,
T.
,
2004
, “
Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm
,”
Stroke
,
35
(
11
), pp.
2500
2505
.10.1161/01.STR.0000144648.89172.0f
14.
Boussel
,
L.
,
Rayz
,
V.
,
McCulloch
,
C.
,
Martin
,
A.
,
Acevedo-Bolton
,
G.
,
Lawton
,
M.
,
Higashida
,
R.
,
Smith
,
W. S.
,
Young
,
W. L.
, and
Saloner
,
D.
,
2008
, “
Aneurysm Growth Occurs at Region of Low Wall Shear Stress
,”
Stroke
,
39
(
11
), pp.
2997
3002
.10.1161/STROKEAHA.108.521617
15.
Meng
,
H.
,
Wang
,
Z.
,
Hoi
,
Y.
,
Gao
,
L.
,
Metaxa
,
E.
,
Swartz
,
D. D.
, and
Kolega
,
J.
,
2007
, “
Complex Hemodynamics at the Apex of an Arterial Bifurcation Induces Vascular Remodeling Resembling Cerebral Aneurysm Initiation
,”
Stroke
,
38
(
6
), pp.
1924
1931
.10.1161/STROKEAHA.106.481234
16.
Valencia
,
A.
, and
Solis
,
F.
,
2006
, “
Blood Flow Dynamics and Arterial Wall Interaction in a Saccular Aneurysm Model of the Basilar Artery
,”
Comput. Struct.
,
84
(
21
), pp.
1326
1337
.10.1016/j.compstruc.2006.03.008
17.
Dhar
,
S.
,
Tremmel
,
M.
,
Mocco
,
J.
,
Kim
,
M.
,
Yamamoto
,
J.
,
Siddiqui
,
A. H.
,
Hopkins
,
L. N.
, and
Meng
,
H.
,
2008
, “
Morphology Parameters for Intracranial Aneurysm Rupture Risk Assessment
,”
Neurosurgery
,
63
(
2
), pp.
185
197
.10.1227/01.NEU.0000316847.64140.81
18.
Baek
,
H.
,
Jayaraman
,
M. V.
,
Richardson
,
P. D.
, and
Karniadakis
,
G. E.
,
2010
, “
Flow Instability and Wall Shear Stress Variation in Intracranial Aneurysms
,”
J. R. Soc. Interface
,
7
(
47
), pp.
967
988
.10.1098/rsif.2009.0476
19.
Xiang
,
J.
,
Natarajan
,
S. K.
,
Tremmel
,
M.
,
Ma
,
D.
,
Mocco
,
J.
,
Hopkins
,
L. N.
,
Siddiqui
,
A. H.
,
Levy
,
E. I.
, and
Meng
,
H.
,
2011
, “
Hemodynamic–Morphologic Discriminants for Intracranial Aneurysm Rupture
,”
Stroke
,
42
(
1
), pp.
144
152
.10.1161/STROKEAHA.110.592923
20.
Cebral
,
J. R.
,
Mut
,
F.
,
Weir
,
J.
, and
Putman
,
C. M.
,
2011
, “
Association of Hemodynamic Characteristics and Cerebral Aneurysm Rupture
,”
Am. J. Neuroradiol.
,
32
(
2
), pp.
264
270
.10.3174/ajnr.A2274
21.
Asgharzadeh
,
H.
, and
Borazjani
,
I.
,
2019
, “
A Non-Dimensional Parameter for Classification of the Flow in Intracranial Aneurysms. I. Simplified Geometries
,”
Phys. Fluids
,
31
(
3
), pp.
031904
31904
.10.1063/1.5033942
22.
Humphrey
,
J. D.
,
2009
, “
Coupling Haemodynamics With Vascular Wall Mechanics and Mechanobiology to Understand Intracranial Aneurysms
,”
Int. J. Comput. Fluid Dyn.
,
23
(
8
), pp.
569
581
.10.1080/10618560902832712
23.
Dolan
,
J. M.
,
Meng
,
H.
,
Sim
,
F. J.
, and
Kolega
,
J.
,
2013
, “
Differential Gene Expression by Endothelial Cells Under Positive and Negative Streamwise Gradients of High Wall Shear Stress
,”
Am. J. Physiol. Cell Physiol.
,
305
(
8
), pp.
C854
C866
.10.1152/ajpcell.00315.2012
24.
Cebral
,
J. R.
,
Castro
,
M. A.
,
Burgess
,
J. E.
,
Pergolizzi
,
R. S.
,
Sheridan
,
M. J.
, and
Putman
,
C. M.
,
2005
, “
Characterization of Cerebral Aneurysms for Assessing Risk of Rupture by Using Patient-Specific Computational Hemodynamics Models
,”
Am. J. Neuroradiol.
,
26
(
10
), pp.
2550
2559
.
25.
Hassan
,
T.
,
Ezura
,
M.
,
Timofeev
,
E. V.
,
Tominaga
,
T.
,
Saito
,
T.
,
Takahashi
,
A.
,
Takayama
,
K.
, and
Yoshimoto
,
T.
,
2004
, “
Computational Simulation of Therapeutic Parent Artery Occlusion to Treat Giant Vertebrobasilar Aneurysm
,”
Am. J. Neuroradiol.
,
25
(
1
), pp.
63
68
.
26.
Omodaka
,
S.
,
Ichirou Sugiyama
,
S.
,
Inoue
,
T.
,
Funamoto
,
K.
,
Fujimura
,
M.
,
Shimizu
,
H.
,
Hayase
,
T.
,
Takahashi
,
A.
, and
Tominaga
,
T.
,
2012
, “
Local Hemodynamics at the Rupture Point of Cerebral Aneurysms Determined by Computational Fluid Dynamics Analysis
,”
Cerebrovascular Diseases
,
34
(
2
), pp.
121
129
.10.1159/000339678
27.
Xiang
,
J.
,
Tutino
,
V. M.
,
Snyder
,
K. V.
, and
Meng
,
H.
,
2014
, “
CFD: Computational Fluid Dynamics or Confounding Factor Dissemination? The Role of Hemodynamics in Intracranial Aneurysm Rupture Risk Assessment
,”
Am. J. Neuroradiol.
,
35
(
10
), pp.
1849
1857
.10.3174/ajnr.A3710
28.
Liou
,
T. M.
, and
Liao
,
C. C.
,
1997
, “
Flow Fields in Lateral Aneurysm Models Arising From Parent Vessels With Different Curvatures Using PTV
,”
Exp. Fluids
,
23
(
4
), pp.
288
298
.10.1007/s003480050113
29.
Liou
,
T. M.
,
Li
,
Y. C.
, and
Juan
,
W. C.
,
2007
, “
Numerical and Experimental Studies on Pulsatile Flow in Aneurysms Arising Laterally From a Curved Parent Vessel at Various Angles
,”
J. Biomech.
,
40
(
6
), pp.
1268
1275
.10.1016/j.jbiomech.2006.05.024
30.
Yamaguchi
,
R.
,
Ujiie
,
H.
,
Haida
,
S.
,
Nakazawa
,
N.
, and
Hori
,
T.
,
2008
, “
Velocity Profile and Wall Shear Stress of Saccular Aneurysms at the Anterior Communicating Artery
,”
Heart Vessels
,
23
(
1
), pp.
60
66
.10.1007/s00380-007-0996-7
31.
Raschi
,
M.
,
Mut
,
F.
,
Byrne
,
G.
,
Putman
,
C. M.
,
Tateshima
,
S.
,
Viñuela
,
F.
,
Tanoue
,
T.
,
Tanishita
,
K.
, and
Cebral
,
J. R.
,
2012
, “
CFD and PIV Analysis of Hemodynamics in a Growing Intracranial Aneurysm
,”
Int. J. Numer. Methods Biomed. Eng.
,
28
(
2
), pp.
214
228
.10.1002/cnm.1459
32.
Roloff
,
C.
,
Bordás
,
R.
,
Nickl
,
R.
,
Mátrai
,
Z.
,
Szaszák
,
N.
,
Szilárd
,
S.
, and
Thévenin
,
D.
,
2013
, “
Investigation of the Velocity Field in a Full-Scale Model of a Cerebral Aneurysm
,”
Int. J. Heat Fluid Flow
,
43
, pp.
212
219
.10.1016/j.ijheatfluidflow.2013.06.006
33.
Bouillot
,
P.
,
Brina
,
O.
,
Ouared
,
R.
,
Lovblad
,
K. O.
,
Pereira
,
V. M.
, and
Farhat
,
M.
,
2014
, “
Multi- Time-Lag PIV Analysis of Steady and Pulsatile Flows in a Sidewall Aneurysm
,”
Exp. Fluids
,
55
(
6
), pp.
1746
1746
.10.1007/s00348-014-1746-0
34.
Cebral
,
J. R.
,
Hernandez
,
M.
,
Frangi
,
A. F.
,
Putman
,
C. M.
,
Pergolizzi
,
R.
, and
Burgess
,
J. E.
,
2004
, “
Subject-Specific Modeling of Intracranial Aneurysms
,”
Proc. SPIE Med. Imaging
,
5369
, pp.
319
327
.10.1117/12.535441
35.
Castro
,
M. A.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
,
2006
, “
Patient-Specific Computational Fluid Dynamics Modeling of Anterior Communicating Artery Aneurysms: A Study of the Sensitivity of Intra—Aneurysmal Flow Patterns to Flow Conditions in the Carotid Arteries
,”
Am. J. Neuroradiol.
,
27
(
10
), pp.
2061
2068
.
36.
Asgharzadeh
,
H.
,
Asadi
,
H.
,
Meng
,
H.
, and
Borazjani
,
I.
,
2019
, “
A Non-Dimensional Parameter for Classification of the Flow in Intracranial Aneurysms. II—Patient-Specific Geometries
,”
Phys. Fluids
,
31
(
3
), pp.
031905
31905
.10.1063/1.5081451
37.
Poelma
,
C.
,
Watton
,
P. N.
, and
Ventikos
,
Y.
,
2015
, “
Transitional Flow in Aneurysms and the Computation of Haemodynamic Parameters
,”
J. R. Soc. Interface
,
12
(
105
), pp.
20141394
20141394
.10.1098/rsif.2014.1394
38.
Gonzalez
,
C. F.
,
Cho
,
Y. I.
,
Ortega
,
H. V.
, and
Moret
,
J.
,
1992
, “
Intracranial Aneurysms: Flow Analysis of Their Origin and Progression
,”
Am. J. Neuroradiol
,
13
(
1
), pp.
181
188
.
39.
Liou
,
T. M.
,
Chang
,
W. C.
, and
Liao
,
C. C.
,
1997
, “
LDV Measurements in Lateral Model Aneurysms of Various Sizes
,”
Exp. Fluids
,
23
(
4
), pp.
317
324
.10.1007/s003480050116
40.
Mulder
,
G.
,
Bogaerds
,
A. C. B.
,
Rongen
,
P.
, and
van de Vosse
,
F. N.
,
2009
, “
On Automated Analysis of Flow Patterns in Cerebral Aneurysms Based on Vortex Identification
,”
J. Eng. Math.
,
64
(
4
), pp.
391
401
.10.1007/s10665-009-9270-6
41.
Le
,
T. B.
,
Troolin
,
D. R.
,
Amatya
,
D.
,
Longmire
,
E. K.
, and
Sotiropoulos
,
F.
,
2013
, “
Vortex Phenomena in Sidewall Aneurysm Hemodynamics: Experiment and Numerical Simulation
,”
Ann. Biomed. Eng.
,
41
(
10
), pp.
2157
2170
.10.1007/s10439-013-0811-9
42.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T. E.
,
2009
, “
Fluid–Structure Interaction Modeling of Blood Flow and Cerebral Aneurysm: Significance of Artery and Aneurysm Shapes
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
45–46
), pp.
3613
3621
.10.1016/j.cma.2008.08.020
43.
Mu
,
L. Z.
,
Li
,
X. Y.
,
Chi
,
Q. Z.
,
Yang
,
S. Q.
,
Zhang
,
P. D.
,
Ji
,
C. J.
,
He
,
Y.
, and
Gao
,
G.
,
2019
, “
Experimental and Numerical Study of the Effect of Pulsatile Flow on Wall Displacement Oscillation in a Flexible Lateral Aneurysm Model
,”
Acta Mech. Sin.
,
35
(
5
), pp.
1120
1129
.10.1007/s10409-019-00893-8
44.
Shamloo
,
A.
,
Nejad
,
M. A.
, and
Saeedi
,
M.
,
2017
, “
Fluid–Structure Interaction Simulation of a Cerebral Aneurysm: Effects of Endovascular Coiling Treatment and Aneurysm Wall Thickening
,”
J. Mech. Behav. Biomed. Mater.
,
74
, pp.
72
83
.10.1016/j.jmbbm.2017.05.020
45.
Ahmed
,
S.
,
Šutalo
,
I. D.
,
Kavnoudias
,
H.
, and
Madan
,
A.
,
2011
, “
Numerical Investigation of Hemodynamics of Lateral Cerebral Aneurysm Following Coil Embolization
,”
Eng. Appl. Comput. Fluid Mech.
,
5
(
3
), pp.
329
340
.10.1080/19942060.2011.11015375
46.
Nikolic
,
I.
,
Tasic
,
G.
,
Bogosavljevic
,
V.
,
Nestorovic
,
B.
,
Jovanovic
,
V.
,
Kojic
,
Z.
,
Djorıc
,
I.
, and
Djurovıc
,
B.
,
2011
, “
Predictable Morphometric Parameters for Rupture of Intracranial Aneurysms—A Series of 142 Operated Aneurysms
,”
Turk. Neurosurg.
,
22
(
4
), pp.
420
426
.10.5137/1019-5149.JTN.4698-11.1
47.
Ujiie
,
H.
,
Tamano
,
Y.
,
Sasaki
,
K.
, and
Hori
,
T.
,
2001
, “
Is the Aspect Ratio a Reliable Index for Predicting the Rupture of a Saccular Aneurysm?
,”
Neurosurgery
,
48
(
3
), pp.
495
503
.10.1097/00006123-200103000-00007
48.
Tremmel
,
M.
,
Dhar
,
S.
,
Levy
,
E. I.
,
Mocco
,
J.
, and
Meng
,
H.
,
2009
, “
Influence of Intracranial Aneurysm to-Parent Vessel Size Ratio on Hemodynamics and Implication for Rupture: Results From a Virtual Experimental Study
,”
Neurosurgery
,
64
(
4
), pp.
622
630
.10.1227/01.NEU.0000341529.11231.69
49.
Nader-Sepahi
,
A.
,
Casimiro
,
M.
,
Sen
,
J.
, and
Kitchen
,
N. D.
,
2004
, “
Is Aspect Ratio a Reliable Predictor of Intracranial Aneurysm Rupture?
,”
Neurosurgery
,
54
(
6
), pp.
1343
1348
.10.1227/01.NEU.0000124482.03676.8B
50.
Usmani
,
A. Y.
, and
Muralidhar
,
K.
,
2018
, “
Flow in an Intracranial Aneurysm Model: Effect of Parent Artery Orientation
,”
J. Visual.
,
21
(
5
), pp.
795
818
.10.1007/s12650-018-0491-5
51.
Wong
,
G. K.
, and
Poon
,
W. S.
,
2011
, “
Current Status of Computational Fluid Dynamics for Cerebral Aneurysms: The Clinician's Perspective
,”
J. Clin. Neurosci.
,
18
(
10
), pp.
1285
1288
.10.1016/j.jocn.2011.02.014
52.
Najjari
,
M. R.
,
Cox
,
C.
, and
Plesniak
,
M. W.
,
2019
, “
Formation and Interaction of Multiple Secondary Flow Vortical Structures in a Curved Pipe: Transient and Oscillatory Flows
,”
J. Fluid Mech.
,
876
, pp.
481
526
.10.1017/jfm.2019.510
53.
Valencia
,
A.
,
Morales
,
H.
,
Rivera
,
R.
,
Bravo
,
E.
, and
Galvez
,
M.
,
2008
, “
Blood Flow Dynamics in Patient-Specific Cerebral Aneurysm Models: The Relationship Between Wall Shear Stress and Aneurysm Area Index
,”
Med. Eng. Phys.
,
30
(
3
), pp.
329
340
.10.1016/j.medengphy.2007.04.011
54.
Wermer
,
M. J.
,
van der Schaaf
,
I. C.
,
Algra
,
A.
, and
Rinkel
,
G. J.
,
2007
, “
Risk of Rupture of Unruptured Intracranial Aneurysms in Relation to Patient and Aneurysm Characteristics
,”
Stroke
,
38
(
4
), pp.
1404
1410
.10.1161/01.STR.0000260955.51401.cd
55.
Gobin
,
Y. P.
,
Counord
,
J. L.
,
Flaud
,
P.
, and
Duffaux
,
J.
,
1994
, “
In Vitro Study of Haemodynamics in a Giant Saccular Aneurysm Model: Influence of Flow Dynamics in the Parent Vessel and Effects of Coil Embolisation
,”
Neuroradiology
,
36
(
7
), pp.
530
536
.10.1007/BF00593516
56.
Usmani
,
A. Y.
, and
Muralidhar
,
K.
,
2016
, “
Pulsatile Flow in a Compliant Stenosed Asymmetric Model
,”
Exp. Fluids
,
57
(
12
), pp.
186
186
.10.1007/s00348-016-2274-x
57.
Chandran
,
K.
,
Dalal
,
I. S.
,
Tatsumi
,
K.
, and
Muralidhar
,
K.
,
2020
, “
Numerical Simulation of Blood Flow Modeled as a Fluid-Particulate Mixture
,”
J. Non-Newtonian Fluid Mech.
,
285
, p.
104383
.10.1016/j.jnnfm.2020.104383
58.
Medero
,
R.
,
Ruedinger
,
K.
,
Rutkowski
,
D.
,
Johnson
,
K.
, and
RoldáN-Alzate
,
A.
,
2020
, “In
Vitro Assessment of Flow Variability in an Intracranial Aneurysm Model Using 4D Flow MRI and tomographic PIV
,”
Ann. Biomed. Eng.
,
48
(10), pp.
2484
2493
.10.1007/s10439-020-02543-8
59.
Tomaszewski
,
M.
,
Sybilski
,
K.
,
Baranowski
,
P.
, and
Małachowski
,
J.
,
2020
, “
Experimental and Numerical Flow Analysis Through Arteries With Stent Using Particle Image Velocimetry and Computational Fluid Dynamics Method
,”
Biocybernet. Biomed. Eng.
,
40
(
2
), pp.
740
751
.10.1016/j.bbe.2020.02.010
60.
Vlachopoulos
,
C.
,
O'Rourke
,
M.
, and
Nichols
,
W. W.
,
2011
, “
McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles
,”
CRC Press
, Boca Raton, FL.
61.
Owais
,
M.
, and
Usmani
,
A. Y.
,
2019
, “
Flow Hemodynamics Within a Bent Asymmetric Stenosed Artery
,”
J. Flow Visual. Image Process.
,
26
(
4
), pp.
335
357
.10.1615/JFlowVisImageProc.2019031045
62.
Gohil
,
T.
,
McGregor
,
R. H. P.
,
Szczerba
,
D.
,
Burckhardt
,
K.
,
Muralidhar
,
K.
, and
SzéKely
,
G.
,
2011
, “
Simulation of Oscillatory Flow in an Aortic Bifurcation Using FVM and FEM: A Comparative Study of Implementation Strategies
,”
Int. J. Numer. Methods Fluids
,
66
(
8
), pp.
1037
1067
.10.1002/fld.2301
63.
Chandran
,
K.
, and
Muralidhar
,
K.
,
2020
, “
A Switching ILU (0)-SGS Preconditioner for Matrix Systems of Incompressible Flow and Heat Transfer Using Condition Number Estimates
,”
Prog. Comput. Fluid Dyn., Int. J.
,
20
(
6
), pp.
315
331
.10.1504/PCFD.2020.111392
64.
Paul
,
C.
,
Das
,
M. K.
, and
Muralidhar
,
K.
,
2015
, “
Three-Dimensional Simulation of Pulsatile Flow Through a Porous Bulge
,”
Transp. Porous Media
,
107
(
3
), pp.
843
870
.10.1007/s11242-015-0470-4
65.
Cebral
,
J. R.
,
Putman
,
C. M.
,
Alley
,
M. T.
,
Hope
,
T.
,
Bammer
,
R.
, and
Calamante
,
F.
,
2009
, “
Hemodynamics in Normal Cerebral Arteries: Qualitative Comparison of 4D Phase-Contrast Magnetic Resonance and Image-Based Computational Fluid Dynamics
,”
J. Eng. Math.
,
64
(
4
), pp.
367
378
.10.1007/s10665-009-9266-2
66.
Kolář
,
V.
,
2007
, “
Vortex Identification: New Requirements and Limitations
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
638
652
.10.1016/j.ijheatfluidflow.2007.03.004
67.
Dean
,
W. R.
,
1928
, “
The Streamline Motion of Fluid in a Curved Pipe
,”
Phil. Mag.
,
5
(
30
), pp.
673
693
.10.1080/14786440408564513
68.
Ye
,
T.
,
Shi
,
H.
,
Phan-Thien
,
N.
, and
Lim
,
C. T.
,
2020
, “
The Key Events of Thrombus Formation: Platelet Adhesion and Aggregation
,”
Biomech. Model. Mechanobiol.
,
19
(
3
), pp.
943
955
.10.1007/s10237-019-01262-x
69.
Moncada
,
S. R. M. J.
,
Palmer
,
R. M. L.
, and
Higgs
,
E.
,
1991
, “Nitric Oxide: Physiology, Pathophysiology, Pharmacology,”
Pharmacol. Rev.
,
43
(2), pp.
109
142
.https://pubmed.ncbi.nlm.nih.gov/1852778/
70.
Crawford
,
T.
,
1959
, “
Some Observations on the Pathogenesis and Natural History of Intracranial Aneurysms
,”
J. Neurol., Neurosurg. Psychiatry
,
22
(
4
), pp.
259
266
.10.1136/jnnp.22.4.259
71.
Nakatani
,
H.
,
Hashimoto
,
N.
,
Kang
,
Y.
,
Yamazoe
,
N.
,
Kikuchi
,
H.
,
Yamaguchi
,
S.
, and
Niimi
,
H.
,
1991
, “
Cerebral Blood Flow Patterns at Major Vessel Bifurcations and Aneurysms in Rats
,”
J. Neurosurg.
,
74
(
2
), pp.
258
262
.10.3171/jns.1991.74.2.0258
72.
Fukuda
,
S.
,
Hashimoto
,
N.
,
Naritomi
,
H.
,
Nagata
,
I.
,
Nozaki
,
K.
,
Kondo
,
S.
,
Kurino
,
M.
, and
Kikuchi
,
H.
,
2000
, “
Prevention of Rat Cerebral Aneurysm Formation by Inhibition of Nitric Oxide Synthase
,”
Circulation
,
101
(
21
), pp.
2532
2538
.10.1161/01.CIR.101.21.2532
73.
Sho
,
E.
,
Sho
,
M.
,
Singh
,
T. M.
,
Xu
,
C.
,
Zarins
,
C. K.
, and
Masuda
,
H.
,
2001
, “
Blood Flow Decrease Induces Apoptosis of Endothelial Cells in Previously Dilated Arteries Resulting From Chronic High Blood Flow
,”
Aeterioscler., Thromb., Vasc. Biol.
,
21
(
7
), pp.
1139
1145
.10.1161/hq0701.092118
74.
Varshney
,
M.
,
Farooqi
,
M. H.
, and
Usmani
,
A. Y.
,
2020
, “
Quantifying Hemodynamics Within an Aneurysm Exposed to Prolonged Exercise Levels
,”
Comput. Methods Prog. Biomed.
,
184
, pp.
105124
105124
.10.1016/j.cmpb.2019.105124
75.
Zhang
,
Y.
,
Chong
,
W.
, and
Qian
,
Y.
,
2013
, “
Investigation of Intracranial Aneurysm Hemodynamics Following Flow Diverter Stent Treatment
,”
Med. Eng. Phys.
,
35
(
5
), pp.
608
615
.10.1016/j.medengphy.2012.07.005
76.
Zhou
,
G.
,
Zhu
,
Y.
,
Yin
,
Y.
,
Su
,
M.
, and
Li
,
M.
,
2017
, “
Association of Wall Shear Stress With Intracranial Aneurysm Rupture: Systematic Review and Meta-Analysis
,”
Sci. Rep.
,
7
(
1
), pp.
1
8
.10.1038/s41598-017-05886-w
77.
Wong
,
G. K.
,
Kwan
,
M. C.
,
Ng
,
R. Y.
,
Yu
,
S. C.
, and
Poon
,
W. S.
,
2011
, “
Flow Diverters for Treatment of Intracranial Aneurysms: Current Status and Ongoing Clinical Trials
,”
J. Clin. Neurosci.
,
18
(
6
), pp.
737
740
.10.1016/j.jocn.2010.10.011
78.
Xiang
,
J.
,
Ma
,
D.
,
Snyder
,
K. V.
,
Levy
,
E. I.
,
Siddiqui
,
A. H.
, and
Meng
,
H.
,
2014
, “
Increasing Flow Diversion for Cerebral Aneurysm Treatment Using a Single Flow Diverter
,”
Neurosurgery
,
75
(
3
), pp.
286
294
.10.1227/NEU.0000000000000409
79.
Mut
,
F.
,
Raschi
,
M.
,
Scrivano
,
E.
,
Bleise
,
C.
,
Chudyk
,
J.
,
Ceratto
,
R.
,
Lylyk
,
P.
, and
Cebral
,
J. R.
,
2015
, “
Association Between Hemodynamic Conditions and Occlusion Times After Flow Diversion in Cerebral Aneurysms
,”
J. NeuroInterventional Surg.
,
7
(
4
), pp.
286
290
.10.1136/neurintsurg-2013-011080
80.
Tanioka
,
S.
,
Ishida
,
F.
,
Kishimoto
,
T.
,
Tsuji
,
M.
,
Tanaka
,
K.
,
Shimosaka
,
S.
,
Toyoda
,
M.
,
Kashi-Wagi
,
N.
,
Sano
,
T.
, and
Suzuki
,
H.
,
2019
, “
Quantification of Hemodynamic Irregularity Using Oscillatory Velocity Index in the Associations With the Rupture Status of Cerebral Aneurysms
,”
J. NeuroInterventional Surg.
,
11
(
6
), pp.
614
617
.10.1136/neurintsurg-2018-014489
81.
Cebral
,
J. R.
,
Detmer
,
F.
,
Chung
,
B. J.
,
Choque-Velasquez
,
J.
,
Rezai
,
B.
,
Lehto
,
H.
,
Tulamo
,
R.
,
Hernesniemi
,
J.
,
Niemela
,
M.
,
Yu
,
A.
, and
Williamson
,
R.
,
2019
, “
Local Hemodynamic Conditions Associated With Focal Changes in the Intracranial Aneurysm Wall
,”
Am. J. Neuroradiol.
,
40
(
3
), pp.
510
516
.10.3174/ajnr.A5970
82.
Greve
,
T.
,
Sollmann
,
N.
,
Hock
,
A.
,
Hey
,
S.
,
Gnanaprakasam
,
V.
,
Nijenhuis
,
M.
,
Zimmer
,
C.
, and
Kirschke
,
J. S.
,
2020
, “
Highly Accelerated Time-of-Flight Magnetic Resonance Angiography Using Spiral Imaging Improves Conspicuity of Intracranial Arterial Branches While Reducing Scan Time
,”
Eur. Radiol.
,
30
(
2
), pp.
855
865
.10.1007/s00330-019-06442-y
83.
Abdalkader
,
M.
,
Piotin
,
M.
,
Chen
,
M.
,
Ortega-Gutierrez
,
S.
,
Samaniego
,
E.
,
Weill
,
A.
,
Norbash
,
A. M.
, and
Nguyen
,
T. N.
,
2020
, “
Coil Migration During or After Endovascular Coiling of Cerebral Aneurysms
,”
J. NeuroInterventional Surg.
,
12
(
5
), pp.
505
511
.10.1136/neurintsurg-2019-015278
84.
Roloff
,
C.
,
Stucht
,
D.
,
Beuing
,
O.
, and
Berg
,
P.
,
2019
, “
Comparison of Intracranial Aneurysm Flow Quantification Techniques: Standard PIV Vs Stereoscopic PIV Vs Tomographic PIV Vs Phase-Contrast MRI Vs CFD
,”
J. NeuroInterventional Surg.
,
11
(
3
), pp.
275
282
.10.1136/neurintsurg-2018-013921
You do not currently have access to this content.