Abstract

Impacting droplet on a hydrophobic surface is investigated and droplet size effect on impacting properties is examined. Liquid pressure variation inside droplet is numerically simulated in the impacting and rebounding periods. Droplet motion on impacted hydrophobic surface is monitored using a high-speed recording system. We showed that predictions and high-speed data for droplet shape and geometric features appear to be almost identical in the spreading and retraction of the droplet on sample surface. Increased volume of droplet gives rise to the peak pressure enhancement in droplet liquid during impact. The maximum droplet height remains larger for large volume droplets in both spreading and retraction cycles. Increasing size of droplet enlarges the wetting diameter on the impacted surface during droplet deformation on sample surfaces. The rate of peak velocity of the spreading surface of the droplet is faster for larger droplets as compared to that corresponding to small droplets. The ratio of spreading period over the retraction period of the droplet becomes small for droplets with small size.

References

1.
Yilbas
,
B. S.
,
Al-Sharafi
,
A.
,
Ali
,
H.
, and
Al-Aqeeli
,
N.
,
2017
, “
Dynamics of a Water Droplet on a Hydrophobic Inclined Surface: Influence of Droplet Size and Surface Inclination Angle on Droplet Rolling
,”
RSC Adv.
,
7
(
77
), pp.
48806
48818
.10.1039/C7RA09345D
2.
Yilbas
,
B. S.
,
Al‐Sharafi
,
A.
, and
Sahin
,
A. Z.
,
2020
, “
Solar Energy Harvesting and a Water Droplet Cleaning of Micropost Arrays Surfaces
,”
Int. J. Energy Res.
,
44
(
3
), pp.
2072
2083
.10.1002/er.5063
3.
Deng
,
T.
,
Varanasi
,
K. K.
,
Hsu
,
M.
,
Bhate
,
N.
,
Keimel
,
C.
,
Stein
,
J.
, and
Blohm
,
M.
,
2009
, “
Nonwetting of Impinging Droplets on Textured Surfaces
,”
Appl. Phys. Lett.
,
94
(
13
), p.
133109
.10.1063/1.3110054
4.
Lee
,
J. B.
,
Laan
,
N.
,
de Bruin
,
K. G.
,
Skantzaris
,
G.
,
Shahidzadeh
,
N.
,
Derome
,
D.
,
Carmeliet
,
J.
, and
Bonn
,
D.
,
2016
, “
Universal Rescaling of Drop Impact on Smooth and Rough Surfaces
,”
J. Fluid Mech.
,
786
, pp.
786
790
.https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/universal-rescaling-of-drop-impact-on-smooth-and-rough-surfaces/763B4B0B79869BBE5238A614C6C8F2CF
5.
Li
,
Z.
,
Kong
,
Q.
,
Ma
,
X.
,
Zang
,
D.
,
Guan
,
X.
, and
Ren
,
X.
,
2017
, “
Dynamic Effects and Adhesion of Water Droplet Impact on Hydrophobic Surfaces: Bouncing or Sticking
,”
Nanoscale
,
9
(
24
), pp.
8249
8255
.10.1039/C7NR02906C
6.
Bird
,
J. C.
,
Dhiman
,
R.
,
Kwon
,
H.-M.
, and
Varanasi
,
K. K.
,
2013
, “
Reducing the Contact Time of a Bouncing Drop
,”
Nature
,
503
(
7476
), pp.
385
388
.10.1038/nature12740
7.
Richard
,
D.
,
Clanet
,
C.
, and
Quéré
,
D.
,
2002
, “
Contact Time of a Bouncing Drop
,”
Nature
,
417
(
6891
), pp.
811
811
.10.1038/417811a
8.
Marston
,
J. O.
,
Moradiafrapoli
,
M.
,
Li
,
C.
,
Lam
,
T.
,
Razu
,
M. E.
, and
Kim
,
J.
,
2018
, “
Footprint of Droplets After Impact Onto Paper Surfaces With a Hydrophobic Barrier
,”
Chem. Eng. Res. Des.
,
133
, pp.
103
110
.10.1016/j.cherd.2018.03.007
9.
Rashidian
,
H.
,
Sellier
,
M.
, and
Mandin
,
P.
,
2019
, “
Dynamic Wetting of an Occlusion After Droplet Impact
,”
Int. J. Multiphase Flow
,
111
), pp.
264
271
.10.1016/j.ijmultiphaseflow.2018.12.002
10.
Patil
,
N. D.
,
Bhardwaj
,
R.
, and
Sharma
,
A.
,
2016
, “
Droplet Impact Dynamics on Micropillared Hydrophobic Surfaces
,”
Exp. Therm. Fluid Sci.
,
74
, pp.
195
206
.10.1016/j.expthermflusci.2015.12.006
11.
Fink
,
V.
,
Cai
,
X.
,
Stroh
,
A.
,
Bernard
,
R.
,
Kriegseis
,
J.
,
Frohnapfel
,
B.
,
Marschall
,
H.
, and
Wörner
,
M.
,
2018
, “
Drop Bouncing by Micro-Grooves
,”
Int. J. Heat Fluid Flow
,
70
, pp.
271
278
.10.1016/j.ijheatfluidflow.2018.02.014
12.
Kannan
,
R.
, and
Sivakumar
,
D.
,
2008
, “
Drop Impact Process on a Hydrophobic Grooved Surface
,”
Colloids Surf. A Physicochem. Eng. Asp.
,
317
(
1–3
), pp.
694
704
.10.1016/j.colsurfa.2007.12.005
13.
Diaz
,
A. J.
, and
Ortega
,
A.
,
2016
, “
Gas-Assisted Droplet Impact on a Solid Surface
,”
ASME J. Fluids Eng.
,
138
(
8
), p.
081104
.10.1115/1.4033025
14.
Chakaneh
,
Z. J.
,
Pishbin
,
S. J.
,
Lotfabadi
,
A. S.
, and
Passandideh-Fard
,
M.
,
2019
, “
Experimental and Numerical Characterization of Drop Impact on a Hydrophobic Cylinder
,”
ASME J. Fluids Eng.
,
141
(
8
), p.
081112
.10.1115/1.4042666
15.
Yan
,
J.
,
Yang
,
K.
,
Zhang
,
X.
, and
Zhao
,
J.
,
2017
, “
Analysis of Impact Phenomenon on Superhydrophobic Surfaces Based on Molecular Dynamics Simulation
,”
Comput. Mater. Sci.
,
134
, pp.
8
16
.10.1016/j.commatsci.2017.03.013
16.
Dong
,
X.
,
Huang
,
X.
, and
Liu
,
J.
,
2019
, “
Modeling and Simulation of Droplet Impact on Elastic Beams Based on SPH
,”
Eur. J. Mech.
,
75
, pp.
237
257
.10.1016/j.euromechsol.2019.01.026
17.
Supakar
,
T.
,
Moradiafrapoli
,
M.
,
Christopher
,
G. F.
, and
Marston
,
J. O.
,
2016
, “
Spreading, Encapsulation and Transition to Arrested Shapes During Drop Impact Onto Hydrophobic Powders
,”
J. Colloid Interface Sci.
,
468
, pp.
10
20
.10.1016/j.jcis.2016.01.028
18.
Olsson
,
E.
, and
Kreiss
,
G.
,
2005
, “
A Conservative Level Set Method for Two Phase Flow
,”
J. Comput. Phys.
,
210
(
1
), pp.
225
246
.10.1016/j.jcp.2005.04.007
19.
Šikalo
,
Š.
,
Wilhelm
,
H.-D.
,
Roisman
,
I. V.
,
Jakirlić
,
S.
, and
Tropea
,
C.
,
2005
, “
Dynamic Contact Angle of Spreading Droplets: Experiments and Simulations
,”
Phys. Fluids
,
17
(
6
), p.
62103
.10.1063/1.1928828
20.
Hu
,
J.
,
Xiong
,
X.
,
Xiao
,
H.
, and
Wan
,
K.
,
2015
, “
Effects of Contact Angle on the Dynamics of Water Droplet Impingement
,”
COMSOL Conference
, Boston, MA.
21.
COMSOL Inc.
,
2017
, “
COMSOL Multiphysics
,” COMSOL Inc., Boston, MA.
22.
Abdelmagid
,
G.
,
Yilbas
,
B. S.
,
Al-Sharafi
,
A.
,
Al-Qahtani
,
H.
, and
Al-Aqeeli
,
N.
,
2019
, “
Water Droplet on Inclined Dusty Hydrophobic Surface: Influence of Droplet Volume on Environmental Dust Particles Removal
,”
RSC Adv.
,
9
(
7
), pp.
3582
3596
.10.1039/C8RA10092F
23.
Yong
,
W. Y. D.
,
Zhang
,
Z.
,
Cristobal
,
G.
, and
Chin
,
W. S.
,
2014
, “
One-Pot Synthesis of Surface Functionalized Spherical Silica Particles
,”
Colloids Surf. A Physicochem. Eng. Asp.
,
460
, pp.
151
157
.10.1016/j.colsurfa.2014.03.039
24.
Heib
,
F.
, and
Schmitt
,
M.
,
2016
, “
Statistical Contact Angle Analyses With the High-Precision Drop Shape Analysis (HPDSA) Approach: Basic Principles and Applications
,”
Coatings
,
6
(
4
), p.
57
.10.3390/coatings6040057
25.
Tatekura
,
Y.
,
Watanabe
,
M.
,
Kobayashi
,
K.
, and
Sanada
,
T.
,
2018
, “
Pressure Generated at the Instant of Impact Between a Liquid Droplet and Solid Surface
,”
R. Soc. Open Sci.
,
5
(
12
), p.
181101
.10.1098/rsos.181101
26.
Bhattacharya
,
S.
,
Charonko
,
J. J.
, and
Vlachos
,
P. P.
,
2018
, “
Particle Image Velocimetry (PIV) Uncertainty Quantification Using Moment of Correlation (MC) Plane
,”
Meas. Sci. Technol.
,
29
(
11
), p.
115301
.10.1088/1361-6501/aadfb4
You do not currently have access to this content.