Abstract

The use of shear sensitive liquid crystals (SSLCs) provides a nonintrusive technique for accurate visualization and quantification of shear stress on surfaces under investigation. However, investigations using liquid crystal involving supersonic and hypersonic flows poses specific requirements for the design of wind tunnel. These constraints are pertaining to time response, erosion, and repeated application of the layer of SSLCs on the model surface as well as its sensitivity to wall temperature under the influence of high-speed flows. In this research, the Mach 4 wind tunnel facility is designed using existing empirical, semi-empirical methods and detailed literature survey and is analyzed numerically in ansysfluent 19.0 environment using transient k–ω shear stress transport Reynolds-averaged Navier–Stokes turbulence model. The influence of geometric contouring of converging section of the supersonic nozzle on the reservoir pressure requirement to establish a M = 4 flow condition in test section is also analyzed. The iterative design method is adopted for the supersonic diffuser section of the wind tunnel where different geometric parameters are varied to achieve higher diffuser efficiency as well as minimum startup time requirement. The parametric study is carried out to ascertain the factors influencing test section wall shear stress during wind tunnel startup process and a novel approach is explored in which the Coanda effect is generated to keep the jet emanating from the supersonic nozzle away from the applied SSLC layer, thereby reducing its erosion effect. Furthermore, the influence of the location of a diaphragm for the partially ruptured case on the wind tunnel startup is also critically analyzed.

References

1.
Baughn
,
J. W.
,
1995
, “
Liquid Crystal Methods for Studying Turbulent Heat Transfer
,”
Int. J. Heat Fluid Flow
,
16
(
5
), pp.
365
375
.10.1016/0142-727X(95)00042-O
2.
Roberts
,
G. T.
, and
East
,
R. A.
,
1996
, “
Liquid Crystal Thermography for Heat Transfer Measurement in Hypersonic flows-A Review
,”
J. Spacecr. Rockets
,
33
(
6
), pp.
761
768
.10.2514/3.26835
3.
Zhao
,
J.
,
2019
, “
Investigation on Wall Shear Stress Measurement in Supersonic Flows With Shock Waves Using Shear-Sensitive Liquid Crystal Coating
,”
Aerosp. Sci. Technol.
,
85
, pp.
453
463
.10.1016/j.ast.2018.12.034
4.
Ash
,
J. I.
,
1978
, “
Liquid Crystals for Nondestructive Evaluation
,” Nondestructive Testing Information Analysis Center, San Antonio, TX, Report No.
Ntiac-78-2
.https://apps.dtic.mil/sti/citations/ADA129084
5.
Zaheer
,
S. Q.
,
Disimile
,
P. J.
, and
Toy
,
N.
,
2021
, “
Assessment of Hue Transformation Algorithms for SSLCS Studies
,”
Am. J. Eng. Res. (AJER)
,
10
(
8
), pp.
276
284
.https://www.ajer.org/papers/Vol-10-issue-8/ZE1008276284.pdf
6.
Savory
,
E.
,
Sykes
,
D. M.
, and
Toy
,
N.
,
2000
, “
Visualisation of Transition on an Axisymmetric Body Using Shear Sensitive Liquid Crystals
,”
Opt. Diag. Eng.
,
4
, pp.
16
25
.https://www.eng.uwo.ca/people/esavory/liquid.pdf
7.
Toy
,
N.
,
Savory
,
E.
, and
Disimile
,
P. J.
,
1991
, “
Determination of Surface Temperature and Surface Shear Stress Using Liquid Crystals
,” Forum on Turbulent Flows-1991, ASME and JSME Joint Fluids Engineering Conference, Proceedings (A92-35986 14-34), Portland, OR, June 23–27, pp.
39
44
.
8.
Disimile
,
P. J.
,
Toy
,
N.
, and
Savory
,
E.
, August
1995
, “
Assessment of Shear Stress Sensitive Liquid Crystals for High-Speed Aerodynamics
,” Proceedings of 2nd Symposium on Transitional and Turbulent Compressible Flows, Joint ASME/JSME Fluids Engineering Conference, Hilton Head, SC, Aug. 13–18, pp. 163–168.
9.
Disimile
,
P. J.
,
Toy
,
N.
, and
Savory
,
E.
,
1995
, “
Evaluation of Shear Sensitive Liquid Crystals at Mach 3
,”
Proceedings 16th International Conference on Instrumentation in Aerospace Simulation Facilities
, IEEE, Wright-Patterson AFB, OH, July 18, pp.
1
6
.10.1109/ICIASF.1995.519114
10.
Reda
,
D. C.
,
Wilder
,
M. C.
,
Farina
,
D. J.
, and
Zilliac
,
G.
,
1997
, “
New Methodology for the Measurement of Surface Shear Stress Vector Distributions
,”
AIAA J.
,
35
(
4
), pp.
608
614
.10.2514/2.165
11.
Toy
,
N.
,
Disimile
,
P. J.
, and
Savory
,
E.
,
1999
, “
Local Shear Stress Measurements Within a Rectangular Yawed Cavity Using Liquid Crystals
,”
Opt. Diagn. Eng.
,
3
, pp.
91
101
.https://www.researchgate.net/publication/262638090_Local_Shear_Stress_Measurements_within_a_Rectangular_Yawed_Cavity_Using_Liquid_Crystals
12.
Anderson
,
J. D.
,
1990
,
Modern Compressible Flow: With Historical Perspective
, Vol.
12
,
McGraw-Hill
,
New York
.
13.
Sauer
,
R.
,
1947
, “General Characteristics of the Flow Through Nozzles at Near Critical Speeds,” NACA Library, Washington DC, Report No.
NACA-TM-1147
.https://ntrs.nasa.gov/citations/20050019415
14.
Flock
,
A. K.
, and
Gülhan
,
A.
,
2020
, “
Design of Converging-Diverging Nozzles With Constant-Radius Center Body
,”
CEAS Space J.
,
12
(
2
), pp.
191
201
.10.1007/s12567-019-00286-4
15.
Yu
,
K.
,
Xu
,
J.
,
Liu
,
S.
, and
Zhang
,
X.
,
2018
, “
Starting Characteristics and Phenomenon of a Supersonic Wind Tunnel Coupled With Inlet Model
,”
Aerosp. Sci. Technol.
,
77
, pp.
626
637
.10.1016/j.ast.2018.03.050
16.
Huang
,
W.
,
Tan
,
J-g.
,
Liu
,
J.
, and
Yan
,
L.
,
2015
, “
Mixing Augmentation Induced by the Interaction Between the Oblique Shock Wave and a Sonic Hydrogen Jet in Supersonic Flows
,”
Acta Astronaut.
,
117
, pp.
142
152
.10.1016/j.actaastro.2015.08.004
17.
Huang
,
W.
,
Liu
,
W-d.
,
Li
,
S-b.
,
Xia
,
Z-x.
,
Liu
,
J.
, and
Wang
,
Z-g.
,
2012
, “
Influences of the Turbulence Model and the Slot Width on the Transverse Slot Injection Flow Field in Supersonic Flows
,”
Acta Astronaut.
,
73
, pp.
1
9
.10.1016/j.actaastro.2011.12.003
18.
Juliano
,
T. J.
,
Schneider
,
S. P.
,
Aradag
,
S.
, and
Knight
,
D.
,
2008
, “
Quiet-Flow Ludwieg Tube for Hypersonic Transition Research
,”
AIAA J.
,
46
(
7
), pp.
1757
1763
.10.2514/1.34640
19.
Dong
,
J.
,
Wang
,
X.
, and
Tu
,
J.
,
2012
, “
Numerical Research About the Internal Flow of Steam-Jet Vacuum Pump: Evaluation of Turbulence Models and Determination of the Shock-Mixing Layer
,”
Phys. Procedia
,
32
, pp.
614
622
.10.1016/j.phpro.2012.03.608
20.
Rabani
,
M.
,
Rabani
,
M.
, and
Rabani
,
R.
,
2017
, “
CFD Analysis of Flow Pattern Inside a Mach 3 Blow down Supersonic Wind Tunnel on Start-Up and Steady State Operation Conditions
,”
Int. J. Fluid Mech. Res.
,
44
(
2
), pp.
155
168
.10.1615/InterJFluidMechRes.2017018174
21.
Shapiro
,
A. H.
,
1953
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
, Vol.
1
,
Ronald Press
, New York.
22.
Kutateladze
,
S. S.
, and
Leont'ev
,
A. I.
,
1964
,
Turbulent Boundary Layers in Compressible Gases
,
Academic Press
,
New York
, pp.
67
91
.
23.
Falempin
,
F.
,
Goldfeld
,
M. A.
,
Nestoulia
,
R. V.
, and
Orlik
,
E. V.
,
2005
, “
The Direct Measurement of Friction at Supersonic Flow Velocities in Scramjet Duct
,”
Fifth European Symposium on Aerothermodynamics for Space Vehicles
, Vol.
563
, Cologne, Germany, Nov. 8–11, p.
87
.https://adsabs.harvard.edu/full/2005ESASP.563...87F
24.
Jahangiri
,
M.
,
2014
, “
CFD Simulation of Shock Waves Propagation in Starting Stage of Blowdown Supersonic Wind Tunnels
,”
Majlesi J. Energy Manag.
,
3
(
2
), pp.
1
9
.https://www.semanticscholar.org/paper/CFD-simulation-of-shock-waves-propagationin-stage-Jahangiri/b19a672943624398854ed4f15dfc7e8f7740f657
25.
Pugazenthi
,
R. S.
, and
McIntosh
,
A. C.
,
2011
, “
Design and Performance Analysis of a Supersonic Diffuser for Plasma Wing Tunnel
,”
Int. J. Aerosp. Mech. Eng.
,
5
(
8
), pp.
1682
1687
.10.2514/6.2008-298
26.
Wegener
,
P. P.
, and
Lobb
,
R. K.
,
1953
, “
An Experimental Study of a Hypersonic Wind-Tunnel Diffuser
,”
J. Aeronaut. Sci.
,
20
(
2
), pp.
105
110
.10.2514/8.2549
27.
Boylan
,
D. E.
,
1964
, “
An Experimental Study of Diffusers in an Openjet, Low-Density, Hypersonic Wind Tunnel
,” Arnold Engineering Development Center, Arnold AFB, TN.
28.
Kantrowitz
,
A.
,
1945
, “Preliminary Investigation of Supersonic Diffusers,” National Aeronautics and Space Admin Langley Research Center, Hampton, VA.
29.
Neumann
,
E. P.
, and
Lustwerk
,
F.
,
1949
, “
Supersonic Diffusers for Wind Tunnels
,”
ASME J. Appl. Mech.
,
16
(
2
), pp.
195
202
.10.1115/1.4009935
30.
Mittal
,
S.
, and
Yadav
,
S.
,
2001
, “
Computation of Flows in Supersonic Wind-Tunnels
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
6–7
), pp.
611
634
.10.1016/S0045-7825(01)00305-X
31.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
2000
, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
969
986
.10.1088/0957-0233/11/7/313
32.
Gall
,
P. O.
, and
Holmes
,
B. J.
,
1986
, “
Liquid Crystals for High-Altitude In-Flight Boundary-Layer Flow Visualization
,”
AIAA
Paper No. 86-2592.10.2514/1986-2592
33.
Hadjadj
,
A.
, and
Dussauge
,
J.-P.
,
2009
, “
Shock Wave Boundary Layer Interaction
,”
Shock Waves
,
19
(
6
), pp.
449
452
.10.1007/s00193-009-0238-2
34.
Smith
,
D. G. G.
, and
Gilchrist
,
A. R.
,
1987
, “
The Compressible Coanda Wall Jet – An Experimental Study of Jet Structure and Breakaway
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
156
164
.10.1016/0142-727X(87)90019-1
35.
Kim
,
T. H.
,
2007
, “
A Study on the Characteristics of Coanda Nozzle Flow
,”
Ph.D. thesis
,
Saga University
,
Japan
.https://core.ac.uk/download/pdf/59164281.pdf
36.
Rancossi
,
M.
,
2011
, “An Overview of Scientific and Technical Literature on Coanda Effect Applied to Nozzles,”
SAE
No. Paper 2011-01-2591.10.4271/2011-01-2591
You do not currently have access to this content.