Abstract

As the first endeavor, we have analyzed the pulsatile flow of Oldroyd-B viscoelastic fluid where the combined effects of fluid elasticity and pulsation parameters on the flow characteristics are numerically studied at a low Reynolds number. Computations are performed using a finite volume-based open-source solver OpenFOAM™ by appending the log-conformation tensor approach to stabilize the numerical solution at high Deborah number. Significant flow velocity enhancement is achieved by increasing the viscoelastic behavior of the fluid. High-velocity gradient zones and high polymeric stress regions are observed near the channel wall. The magnitude of axial velocity attenuates with increasing pulsation amplitude or pulsation frequency, and the extent of this attenuation is highly dependent on the Deborah number or the retardation ratio. This work finds application in the transport of polymeric solutions, extrusion, and injection molding of polymer melts in several process industries.

References

1.
Jia
,
J-h.
, and
Hua
,
H-X.
,
2008
, “
Study of Oscillating Flow of Viscoelastic Fluid With the Fractional Maxwell Model
,”
ASME J. Fluids Eng.
,
130
(
4
), p.
041201
.10.1115/1.2903517
2.
Shah
,
S. D.
,
1996
, “
Pulsating Gas-Assisted Injection Molding Method and Apparatus
,” U.S. Patent No. 5,482,669.
3.
Wang
,
Q.
, and
Jin-Ping
,
Q.
,
2007
, “
Analysis on Pulsating Flow of Melt for Reciprocating Extrusion in the Screw Channel
,”
Polym. Plast. Technol. Eng.
,
46
(
11
), pp.
1055
1061
.10.1080/03602550701522450
4.
Phan-Thien
,
N.
,
1978
, “
On Pulsating Flow of Polymeric Fluids
,”
J. Non-Newtonian Fluid Mech.
,
4
(
3
), pp.
167
176
.10.1016/0377-0257(78)80001-9
5.
Sankar
,
D.
, and
Lee
,
U.
,
2009
, “
Mathematical Modeling of Pulsatile Flow of Non-Newtonian Fluid in Stenosed Arteries
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
7
), pp.
2971
2981
.10.1016/j.cnsns.2008.10.015
6.
Phan-Thien
,
N.
, and
Dudek
,
J.
,
1982
, “
Pulsating Flow of a Plastic Fluid
,”
Nature
,
296
(
5860
), pp.
843
844
.10.1038/296843a0
7.
Jinping
,
Q.
,
Dantao
,
C.
,
Yanhong
,
F.
,
Xiaochun
,
Y.
, and
Jianhua
,
D.
,
2008
, “
Influence of Pulsating-Pressure-Induced Injection Molding on Rheologic Property of Polymer Melt in Spiral Cavity
,”
Eng. Plast. Appl.
,
4
.
8.
Razavi
,
A.
,
Shirani
,
E.
, and
Sadeghi
,
M.
,
2011
, “
Numerical Simulation of Blood Pulsatile Flow in a Stenosed Carotid Artery Using Different Rheological Models
,”
J. Biomech.
,
44
(
11
), pp.
2021
2030
.10.1016/j.jbiomech.2011.04.023
9.
Tu
,
C.
, and
Deville
,
M.
,
1996
, “
Pulsatile Flow of Non-Newtonian Fluids Through Arterial Stenoses
,”
J. Biomech.
,
29
(
7
), pp.
899
908
.10.1016/0021-9290(95)00151-4
10.
Hettiarachchi
,
H.
,
Hsu
,
Y.
,
Harris
,
T. J.
, and
Linninger
,
A. A.
,
2011
, “
The Effect of Pulsatile Flow on Intrathecal Drug Delivery in the Spinal Canal
,”
Ann. Biomed. Eng.
,
39
(
10
), p.
2592
.10.1007/s10439-011-0346-x
11.
Dhananchezhiyan
,
P.
, and
Hiremath
,
S. S.
,
2018
, “
Improving the Performance of Micro Pumps by Reduction of Flow Pulsation for Drug Delivery Application
,”
Adv. Mater. Process. Technol.
,
4
(
1
), pp.
24
38
.10.1080/2374068X.2017.1367987
12.
Mahapatra
,
B.
, and
Bandopadhyay
,
A.
,
2020
, “
Electroosmosis of a Viscoelastic Fluid Over Non-Uniformly Charged Surfaces: Effect of Fluid Relaxation and Retardation Time
,”
Phys. Fluids
,
32
(
3
), p.
032005
.10.1063/5.0003457
13.
Bird
,
R.
,
Armstrong
,
R.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids: Vol.1. Fluid Mechanics
,
Wiley
,
New York
.
14.
Giesekus
,
H.
,
1982
, “
A Simple Constitutive Equation for Polymer Fluids Based on the Concept of Deformation-Dependent Tensorial Mobility
,”
J. Non-Newtonian Fluid Mech.
,
11
(
1–2
), pp.
69
109
.10.1016/0377-0257(82)85016-7
15.
Phan-Thien
,
N.
, and
Tanner
,
R.
,
1983
, “
Viscoelastic Squeeze-Film Flows–Maxwell Fluids
,”
J. Fluid Mech.
,
129
(
1
), pp.
265
281
.10.1017/S0022112083000762
16.
Khadrawi
,
A.
,
Al-Nimr
,
M.
, and
Othman
,
A.
,
2005
, “
Basic Viscoelastic Fluid Flow Problems Using the Jeffreys Model
,”
Chem. Eng. Sci.
,
60
(
24
), pp.
7131
7136
.10.1016/j.ces.2005.07.006
17.
Oldroyd
,
J.
,
1958
, “
Non-Newtonian Effects in Steady Motion of Some Idealized Elastico-Viscous Liquids
,”
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
,
245
(
1241
), pp.
278
297
.10.1098/rspa.1958.0083
18.
Phan-Thien
,
N.
,
1978
, “
A Nonlinear Network Viscoelastic Model
,”
J. Rheol.
,
22
(
3
), pp.
259
283
.10.1122/1.549481
19.
Bird
,
R.
,
Dotson
,
P.
, and
Johnson
,
N.
,
1980
, “
Polymer Solution Rheology Based on a Finitely Extensible Bead–Spring Chain Model
,”
J. Non-Newtonian Fluid Mech.
,
7
(
2–3
), pp.
213
235
.10.1016/0377-0257(80)85007-5
20.
McLeish
,
T.
, and
Larson
,
R.
,
1998
, “
Molecular Constitutive Equations for a Class of Branched Polymers: The Pom-Pom Polymer
,”
J. Rheol.
,
42
(
1
), pp.
81
110
.10.1122/1.550933
21.
Amoreira
,
L.
, and
Oliveira
,
P.
,
2010
, “
Comparison of Different Formulations for the Numerical Calculation of Unsteady Incompressible Viscoelastic Fluid Flow
,”
Adv. Appl. Math. Mech.
,
2
(
4
), pp.
483
502
.10.4208/aamm.10-m1010
22.
Fattal
,
R.
, and
Kupferman
,
R.
,
2004
, “
Constitutive Laws for the Matrix-Logarithm of the Conformation Tensor
,”
J. Non-Newtonian Fluid Mech.
,
123
(
2–3
), pp.
281
285
.10.1016/j.jnnfm.2004.08.008
23.
Fattal
,
R.
, and
Kupferman
,
R.
,
2005
, “
Time-Dependent Simulation of Viscoelastic Flows at High Weissenberg Number Using the Log-Conformation Representation
,”
J. Non-Newtonian Fluid Mech.
,
126
(
1
), pp.
23
37
.10.1016/j.jnnfm.2004.12.003
24.
Afonso
,
A.
,
Oliveira
,
P. J.
,
Pinho
,
F.
, and
Alves
,
M.
,
2009
, “
The Log-Conformation Tensor Approach in the Finite Volume Method Framework
,”
J. Non-Newtonian Fluid Mech.
,
157
(
1–2
), pp.
55
65
.10.1016/j.jnnfm.2008.09.007
25.
Chen
,
X.
,
Marschall
,
H.
,
Schäfer
,
M.
, and
Bothe
,
D.
,
2013
, “
A Comparison of Stabilisation Approaches for Finite Volume Simulation of Viscoelastic Fluid Flow
,”
Int. J. Comput. Fluid Dyn.
,
27
(
6–7
), pp.
229
250
.10.1080/10618562.2013.829916
26.
Mahapatra
,
B.
, and
Bandopadhyay
,
A.
,
2021
, “
Numerical Analysis of Combined Electroosmotic-Pressure Driven Flow of a Viscoelastic Fluid Over High Zeta Potential Modulated Surfaces
,”
Phys. Fluids
,
33
(
1
), p.
012001
.10.1063/5.0033088
27.
Mahapatra
,
B.
, and
Bandopadhyay
,
A.
,
2021
, “
Microconfined Electroosmotic Flow of a Complex Fluid With Asymmetric Charges: Interplay of Fluid Rheology and Physicochemical Heterogeneity
,”
J. Non-Newtonian Fluid Mech.
,
289
, p.
104479
.10.1016/j.jnnfm.2021.104479
28.
Perera
,
M.
, and
Walters
,
K.
,
1977
, “
Long-Range Memory Effects in Flows Involving Abrupt Changes in Geometry: Part I: Flows Associated With i-Shaped and t-Shaped Geometries
,”
J. Non-Newtonian Fluid Mech.
,
2
(
1
), pp.
49
81
.10.1016/0377-0257(77)80032-3
29.
Sun
,
J.
,
Phan-Thien
,
N.
, and
Tanner
,
R. I.
,
1996
, “
An Adaptive Viscoelastic Stress Splitting Scheme and Its Applications: AVSS/SI and AVSS/SUPG
,”
J. Non-Newtonian Fluid Mech.
,
65
(
1
), pp.
75
91
.10.1016/0377-0257(96)01448-6
30.
Duarte
,
A.
,
Miranda
,
A. I.
, and
Oliveira
,
P. J.
,
2008
, “
Numerical and Analytical Modeling of Unsteady Viscoelastic Flows: The Start-Up and Pulsating Test Case Problems
,”
J. Non-Newtonian Fluid Mech.
,
154
(
2–3
), pp.
153
169
.10.1016/j.jnnfm.2008.04.009
31.
Rosenfeld
,
M.
, and
Einav
,
S.
,
1995
, “
The Effect of Constriction Size on the Pulsatile Flow in a Channel
,”
ASME J. Fluids Eng.
,
117
(
4
), pp.
571
576
.10.1115/1.2817303
32.
Daidzic
,
N. E.
,
2014
, “
Application of Womersley Model to Reconstruct Pulsatile Flow From Doppler Ultrasound Measurements
,”
ASME J. Fluids Eng.
,
136
(
4
), p.
041102
.10.1115/1.4026481
33.
Budwig
,
R.
,
Egelhoff
,
C. J.
, and
Tavoularis
,
S.
,
1997
, “
Laminar Pulsatile Flow Through an Axisymmetric Sudden Expansion
,”
ASME J. Fluids Eng.
,
119
(
1
), pp.
208
211
.10.1115/1.2819113
34.
Yapici
,
K.
,
Karasozen
,
B.
, and
Uludag
,
Y.
,
2012
, “
Numerical Analysis of Viscoelastic Fluids in Steady Pressure-Driven Channel Flow
,”
ASME J. Fluids Eng.
,
134
(
5
), p.
051206
.10.1115/1.4006696
35.
Cable
,
P.
, and
Boger
,
D.
,
1979
, “
A Comprehensive Experimental Investigation of Tubular Entry Flow of Viscoelastic Fluids: Part III—Unstable Flow
,”
AIChE J.
,
25
(
1
), pp.
152
159
.10.1002/aic.690250117
36.
Khabakhpasheva
,
E.
,
Popov
,
V.
,
Kekalov
,
A.
, and
Mikhailova
,
E.
,
1989
, “
Pulsating Flow of Viscoelastic Fluids in Tubes
,”
J. Non-Newtonian Fluid Mech.
,
33
(
3
), pp.
289
304
.10.1016/0377-0257(89)80003-5
37.
Letelier
,
M. F.
,
Siginer
,
D. A.
, and
Cáceres
,
C.
,
2002
, “
Pulsating Flow of Viscoelastic Fluids in Straight Tubes of Arbitrary Cross-Section–Part I: Longitudinal Field
,”
Int. J. Non-Linear Mech.
,
37
(
2
), pp.
369
393
.10.1016/S0020-7462(01)00046-4
38.
Siginer
,
D. A.
, and
Letelier
,
M. F.
,
2002
, “
Pulsating Flow of Viscoelastic Fluids in Straight Tubes of Arbitrary Cross-Section–Part II: Secondary Flows
,”
Int. J. Non-Linear Mech.
,
37
(
2
), pp.
395
407
.10.1016/S0020-7462(01)00047-6
39.
Rachid
,
H.
, and
Ouazzani
,
M.
,
2014
, “
Interaction of Pulsatile Flow With Peristaltic Transport of a Viscoelastic Fluid: Case of a Maxwell Fluid
,”
Int. J. Appl. Mech.
,
06
(
05
), p.
1450061
.10.1142/S1758825114500616
40.
Javadzadegan
,
A.
,
Esmaeili
,
M.
,
Majidi
,
S.
, and
Fakhimghanbarzadeh
,
B.
,
2009
, “
Pulsatile Flow of Viscous and Viscoelastic Fluids in Constricted Tubes
,”
J. Mech. Sci. Technol.
,
23
(
9
), pp.
2456
2467
.10.1007/s12206-009-0713-9
41.
Bakhti
,
H.
,
Azrar
,
L.
, and
Dumitru
,
B.
,
2017
, “
Pulsatile Blood Flow in Constricted Tapered Artery Using a Variable-Order Fractional Oldroyd-B Model
,”
Therm. Sci.
,
21
(
1 Part A
), pp.
29
40
.10.2298/TSCI160421237B
42.
Moyers-Gonzalez
,
M. A.
,
Owens
,
R. G.
, and
Fang
,
J.
,
2009
, “
On the High Frequency Oscillatory Tube Flow of Healthy Human Blood
,”
J. Non-Newtonian Fluid Mech.
,
163
(
1–3
), pp.
45
61
.10.1016/j.jnnfm.2009.06.005
43.
Sajid
,
M.
,
Zaman
,
A.
,
Ali
,
N.
, and
Siddiqui
,
A. M.
,
2015
, “
Pulsatile Flow of Blood in a Vessel Using an Oldroyd-B Fluid
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
16
(
5
), pp.
197
206
.10.1515/ijnsns-2013-0133
44.
Qamar
,
A.
,
Seda
,
R.
, and
Bull
,
J. L.
,
2011
, “
Pulsatile Flow Past an Oscillating Cylinder
,”
Phys. Fluids
,
23
(
4
), p.
041903
.10.1063/1.3576186
45.
Gupta
,
S.
,
Patel
,
S.
, and
Chhabra
,
R.
,
2020
, “
Pulsatile Flow of Power-Law Fluids Over a Heated Cylinder: Flow and Heat Transfer Characteristics
,”
Int. J. Therm. Sci.
,
152
, p.
106330
.10.1016/j.ijthermalsci.2020.106330
46.
Vamerzani
,
B.
,
Norouzi
,
M.
, and
Firoozabadi
,
B.
,
2014
, “
Analytical Solution for Creeping Motion of a Viscoelastic Drop Falling Through a Newtonian Fluid
,”
Korea-Australia Rheol. J.
,
26
(
1
), pp.
91
104
.10.1007/s13367-014-0010-8
47.
Alves
,
M. A.
,
Oliveira
,
P. J.
, and
Pinho
,
F. T.
,
2003
, “
Benchmark Solutions for the Flow of Oldroyd-b and Ptt Fluids in Planar Contractions
,”
J. Non-Newtonian Fluid Mech.
,
110
(
1
), pp.
45
75
.10.1016/S0377-0257(02)00191-X
48.
Kiran Raj
,
M.
,
DasGupta
,
S.
, and
Chakraborty
,
S.
,
2019
, “
Biomimetic Pulsatile Flows Through Flexible Microfluidic Conduits
,”
Biomicrofluidics
,
13
(
1
), p.
014103
.10.1063/1.5065901
49.
Pimenta
,
F.
, and
Alves
,
M.
,
2016
, “
rheoTool
,” accessed July 23, 2021, https://github.com/fppimenta/rheoTool
50.
Oliveira
,
P. J.
,
Pinho
,
F. D.
, and
Pinto
,
G.
,
1998
, “
Numerical Simulation of Non-Linear Elastic Flows With a General Collocated Finite Volume Method
,”
J. Non-Newtonian Fluid Mech.
,
79
(
1
), pp.
1
43
.10.1016/S0377-0257(98)00082-2
51.
Alves
,
M.
,
Oliveira
,
P.
, and
Pinho
,
F.
,
2003
, “
A Convergent and Universally Bounded Interpolation Scheme for the Treatment of Advection
,”
Int. J. Numer. Methods Fluids
,
41
(
1
), pp.
47
75
.10.1002/fld.428
52.
Pimenta
,
F.
, and
Alves
,
M.
,
2017
, “
Stabilization of an Open-Source Finite Volume Solver for Viscoelastic Fluid Flows
,”
J. Non-Newtonian Fluid Mech.
,
239
, pp.
85
104
.10.1016/j.jnnfm.2016.12.002
53.
Van Doormaal
,
J.
, and
Raithby
,
G.
,
1984
, “
Enhancements of the Simple Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
.10.1080/01495728408961817
54.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
,
Raad
,
P. E.
,
Celik
,
Ì.
,
Freitas
,
C.
, and
Coleman
,
H.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
55.
Rath
,
S.
, and
Dash
,
S. K.
,
2019
, “
Effect of Horizontal Spacing and Tilt Angle on Thermo-Buoyant Natural Convection From Two Horizontally Aligned Square Cylinders
,”
Int. J. Therm. Sci.
,
146
, p.
106113
.10.1016/j.ijthermalsci.2019.106113
56.
Rath
,
S.
,
2021
, “
Complex Interplay of Power-Law Rheology and Non-Oberbeck-Boussinesq Effects on Natural Convection Heat Transfer in a Confined Domain
,”
Int. J. Heat Mass Transfer
,
176
, p.
121462
.10.1016/j.ijheatmasstransfer.2021.121462
57.
Na
,
Y.
, and
Yoo
,
J.
,
1991
, “
A Finite Volume Technique to Simulate the Flow of a Viscoelastic Fluid
,”
Comput. Mech.
,
8
(
1
), pp.
43
55
.10.1007/BF00370547
You do not currently have access to this content.