Abstract

Pump-turbines cope very well with modern electricity-market demand, having high operational flexibility and storage capabilities. Nevertheless, dynamic operation of these machines can lead to very challenging transient conditions, depending on the shape of the characteristic. Mechanical integrity can be correspondingly affected. Therefore, assessment of the characteristic during the design phase is of crucial importance. In the past years, different attempts to accurately compute the characteristic under steady and transient conditions have been undertaken using Reynolds-averaged Navier–Stokes (RANS) computational fluid dynamics. While the k–ω shear stress transport (SST) turbulence model has become the reference for machine design, it often fails for conditions close to or around instabilities. Under unstable conditions, which are characterized by continuous unsteady vortex formation, turbulence isotropy as assumed by linear two equation models is no longer the right choice. Accordingly, a turbulence model able to capture anisotropy, explicit algebraic Reynolds stress model (EARSM), has been implemented in an in-house code and used for the computation of the characteristic of various machines, stable and unstable, to assess the model performance. In this paper, computations of three different dynamic pump-turbine operating conditions are presented. Results using steady boundary conditions (BC) in the unstable region as well as transient BC like load-rejection and runaway are computed with EARSM, showing its superiority compared to linear two equation models. The model's capability to capture anisotropic effects—such as the influence of corners—produces more physical flow structures in the vaneless space, which lead to an overall improvement of the predicted stability characteristics.

References

1.
Staubli
,
T.
,
Senn
,
F.
, and
Sallaberger
,
M.
,
2008
, “
Instability of Pump-Turbines During Start-Up in Turbine Mode
,” Hydro, Ljubljana, Slovenia, Oct. 6–8, Paper No.
9.6
.https://www.researchgate.net/publication/237241545_Instability_of_Pump-Turbines_during_Start-up_in_Turbine_Mode
2.
Widmer
,
C.
,
Staubli
,
T.
, and
Ledergerber
,
N.
,
2011
, “
Unstable Characteristics and Rotating Stall in Turbine Brake Operation of Pump-Turbines
,”
ASME J. Fluids Eng.
,
133
(
4
), p. 041101.10.1115/1.4003874
3.
Cavazzini
,
G.
,
Covi
,
A.
,
Pavesi
,
G.
, and
Ardizzon
,
G.
,
2016
, “
Analysis of the Unstable Behavior of a Pump-Turbine in Turbine Mode: Fluid-Dynamical and Spectral Characterization of the s-Shape Characteristic
,”
ASME J. Fluids Eng.
,
138
(
2
), p. 021105.10.1115/1.4031368
4.
Lenarcic
,
M.
,
Bauer
,
C.
,
Giese
,
M.
, and
Jung
,
A.
,
2016
, “
Prediction of s-Shaped Characteristics in Reversible Pump-Turbines Using Different Numerical Approaches
,”
IOP Conference Series: Earth and Environmental Science
, Vol.
49
,
IOP Publishing
, Grenoble, France, July 4–8, p.
042009
.10.1088/1755-1315/49/4/042009
5.
Xia
,
L.-S.
,
Cheng
,
Y.-G.
,
Yang
,
J.-D.
, and
Cai
,
F.
,
2019
, “
Evolution of Flow Structures and Pressure Fluctuations in the s-Shaped Region of a Pump-Turbine
,”
J. Hydraulic Res.
,
57
(
1
), pp.
107
121
.10.1080/00221686.2018.1459893
6.
Li
,
J.
,
Yu
,
J.
, and
Wu
,
Y.
,
2010
, “
3D Unsteady Turbulent Simulations of Transients of the Francis Turbine
,”
IOP Conference Series: Earth and Environmental Science
, Vol.
12
,
IOP Publishing, Timisoara, Romania, Sept. 20–24
, p.
012001
.10.1088/1755-1315/12/1/012001
7.
Cherny
,
S.
,
Chirkov
,
D.
,
Bannikov
,
D.
,
Lapin
,
V.
,
Skorospelov
,
V.
,
Eshkunova
,
I.
, and
Avdushenko
,
A.
,
2010
, “
3D Numerical Simulation of Transient Processes in Hydraulic Turbines
,”
IOP Conference Series: Earth and Environmental Science
, Vol.
12
,
IOP Publishing
, Timisoara, Romania, Sept. 20–24, p.
012071
.10.1088/1755-1315/12/1/012071
8.
Casartelli
,
E.
,
Mangani
,
L.
,
Ryan
,
O.
, and
Schmid
,
A.
,
2016
, “
Application of Transient Cfd-Procedures for s-Shape Computation in Pump-Turbines With and Without Fsi
,”
IOP Conference Series: Earth and Environmental Science
, Vol.
49
,
IOP Publishing
, Grenoble, France, July 4–8, p.
042008
.https://iopscience.iop.org/article/10.1088/1755-1315/49/4/042008/pdf
9.
Xiao
,
Y.
,
Zhu
,
W.
,
Wang
,
Z.
,
Zhang
,
J.
,
Zeng
,
C.
, and
Yao
,
Y.
,
2016
, “
Analysis of the Internal Flow Behavior on s-Shaped Region of a Francis Pump Turbine on Turbine Mode
,”
Eng. Comput.
,
33
(
2
).10.1108/EC-04-2015-0084.
10.
Wang
,
L.
,
Yin
,
J.
,
Jiao
,
L.
,
Wu
,
D.
, and
Qin
,
D.
,
2011
, “
Numerical Investigation on the “s” Characteristics of a Reduced Pump Turbine Model
,”
Sci. China Technol. Sci.
,
54
(
5
), pp.
1259
1266
.10.1007/s11431-011-4295-2
11.
Jacquet
,
C.
,
Fortes-Patella
,
R.
,
Balarac
,
L.
, and
Houdeline
,
J.-B.
,
2016
, “
Cfd Investigation of Complex Phenomena in s-Shape Region of Reversible Pump-Turbine
,”
IOP Conference Series: Earth and Environmental Science
, Vol.
49
,
IOP Publishing
, Grenoble, France, July 4–8, p.
042010
.10.1088/1755-1315/49/4/042010
12.
Guo
,
L.
,
Liu
,
J.
,
Wang
,
L.
,
Jiao
,
L.
, and
Li
,
Z.
,
2012
, “
Numerical Analysis on Pump Turbine Runaway Points
,”
IOP Conference Series: Earth and Environmental Science
, Vol.
15
,
IOP Publishing
, Beijing, China, Aug. 19–23, p.
042017
.10.1088/1755-1315/15/4/042017
13.
Xia
,
L.
,
Cheng
,
Y.
,
You
,
J.
,
Zhang
,
X.
,
Yang
,
J.
, and
Qian
,
Z.
,
2017
, “
Mechanism of the s-Shaped Characteristics and the Runaway Instability of Pump-Turbines
,”
ASME J. Fluids Eng.
,
139
(
3
), p. 031101.10.1115/1.4035026
14.
Liu
,
J.
,
Liu
,
S.
,
Wu
,
Y.
,
Sun
,
Y.
, and
Zuo
,
Z.
,
2012
, “
Prediction of” s” Characteristics of a Pump-Turbine With Small Opening Based on v2f Model
,”
International Journal of Modern Physics: Conference Series
, Vol.
19
,
World Scientific
, Lijiang, China, June 13–16, pp.
417
423
.10.1142/S2010194512009014
15.
Li
,
J.
,
Hu
,
Q.
,
Yu
,
J.
, and
Li
,
Q.
,
2013
, “
Study on s-Shaped Characteristic of Francis Reversible Unit by On-Site Test and CFD Simulation
,”
Sci. China Technol. Sci.
,
56
(
9
), pp.
2163
2169
.10.1007/s11431-013-5309-z
16.
Mangani
,
L.
,
Buchmayr
,
M.
, and
Darwish
,
M.
,
2014
, “
Development of a Novel Fully Coupled Solver in Openfoam: Steady-State Incompressible Turbulent Flows
,”
Numer. Heat Transfer, Part B: Fundam.
,
66
(
1
), pp.
1
20
.10.1080/10407790.2014.894448
17.
Casartelli
,
E.
,
Mangani
,
L.
,
Romanelli
,
G.
, and
Staubli
,
T.
,
2014
, “
Transient Simulation of Speed-No Load Conditions With an Open-Source Based c Code
,”
IOP Conference Series: Earth and Environmental Science
, Vol.
22
,
IOP Publishing
, Montreal, Canada, Sept. 22–26, p.
032029
.10.1088/1755-1315/22/3/032029
18.
Casartelli
,
E.
,
Del Rio
,
A.
,
Schmid
,
A.
, and
Mangani
,
L.
,
2017
, “
CFD Computation of Transients in Pump-Turbines
,”
Hydro2017
, Seville, Spain, Oct.
9
11
.
19.
Deniz
,
S.
,
Del Rio
,
A.
, and
Casartelli
,
E.
,
2019
, “
Experimental and Numerical Investigation of the Speed-No-Load Instability of a Low Specific Speed Pump-Turbine With Focus on the Influence of Turbulence Models
,”
IOP Conference Series: Earth and Environmental Science
, Vol.
240
,
IOP Publishing
, Japan, Kyoto, Sept. 17–21, p.
082005
.10.1088/1755-1315/240/8/082005
20.
Menter
,
F.
, and
Esch
,
T.
,
2001
, “
Elements of Industrial Heat Transfer Predictions
,”
16th Brazilian Congress of Mechanical Engineering (COBEM)
, Vol.
109
, Minas Gerais, Brazil, Nov. 26–30, p.
650
.https://www.researchgate.net/file.PostFileLoader.html?id=58500561b0366d121d756004&assetKey=AS:438841040478208@1481639265395
21.
Smirnov
,
P. E.
, and
Menter
,
F. R.
,
2009
, “
Sensitization of the Sst Turbulence Model to Rotation and Curvature by Applying the Spalart–Shur Correction Term
,”
ASME J. Turbomach.
,
131
(
4
), p. 041010.10.1115/1.3070573
22.
Mangani
,
L.
,
Casartelli
,
E.
,
Hanimann
,
L.
,
Wild
,
M.
, and
Spyrou
,
N.
,
2014
, “
Assessment of an Implicit Mixing Plane Approach for Pump-Turbine Applications
,”
IOP Conference Series: Earth and Environmental Science
, Vol.
22
,
IOP Publishing
, Montreal, Canada, Sept. 22–26, p.
022003
.10.1088/1755-1315/22/2/022003
23.
Hanimann
,
L.
,
Casartelli
,
E.
, and
Mangani
,
L.
,
2014
, “
Reviewing the Implicit Mixing Plane Approach: Theoretical and Applied Cases
,”
ASME
Paper No. GT2014-25869.10.1115/GT2014-25869
24.
Hanimann
,
L.
,
Mangani
,
L.
,
Casartelli
,
E.
,
Mokulys
,
T.
, and
Mauri
,
S.
,
2014
, “
Development of a Novel Mixing Plane Interface Using a Fully Implicit Averaging for Stage Analysis
,”
ASME J. Turbomach.
,
136
(
8
), p.
081010
.10.1115/1.4026323
25.
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1993
, “
On Explicit Algebraic Stress Models for Complex Turbulent Flows
,”
J. Fluid Mech.
,
254
, pp.
59
78
.10.1017/S0022112093002034
26.
Wallin
,
S.
, and
Johansson
,
A. V.
,
2000
, “
An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows
,”
J. Fluid Mech.
,
403
, pp.
89
132
.10.1017/S0022112099007004
27.
Menter
,
F.
,
Garbaruk
,
A.
, and
Egorov
,
Y.
,
2012
, “
Explicit Algebraic Reynolds Stress Models for Anisotropic Wall-Bounded Flows
,”
Prog. Flight Phys.
,
3
, pp.
89
104
.10.1051/eucass/201203089
28.
Koutnik
,
J.
,
Giese
,
M.
,
Bruns
,
N.
,
Hellstern
,
J.
,
Kahler
,
J.
, and
Loefflad
,
J.
,
2016
, “
Commissioning Experience on Recent Pump-Storage Power Plants by Voith Hydro
,”
Vienna Hydro Conference
, Vienna, Austria, Nov. 9–11.
You do not currently have access to this content.