Abstract

All hydraulic machinery has a tip clearance, which not only produces tip-leakage vortexes (TLVs), but also reduces the energy performance of the machinery. In addition, tip clearance leads to cavitation and attendant vibration and noise. Therefore, investigating tip-leakage cavitating flow and noise characteristics is of great practical importance. In this paper, the energy performance and noise characteristics of NACA0009 hydrofoils with different tip clearance sizes are studied. A large eddy simulation model and Schnerr–Sauer cavitation model are employed to simulate tip-leakage cavitating flow. Additionally, a broadband noise source model and the Ffowcs Williams–Hawkings (FW–H) equation are used to calculate the noise source and far-field radiated noise characteristics, respectively. Results show that the numerical simulation of cavitation vortex and velocity field is in good agreement with the experimental data, illuminating the characteristics of energy performance, flow pattern, cavitation flow, broadband noise source, and near-field and far-field radiated noise. Compared with the original NACA0009 hydrofoil, the tip clearance reduces the noise of the Curle dipole on the hydrofoil surface and Proudman noise around the hydrofoil. Moreover, study of the far-field noise shows that the directivity curve of the overall sound pressure level (SPL) is distributed in a butterfly shape, symmetrically. Evidently, the tip clearance size has a large impact on the energy performance of the hydrofoil, the intensity of the TLV, and the cavitation. This paper lays a solid foundation for further research on cavitation flow in large-scale hydraulic machinery.

References

1.
Wang
,
Z.
,
Li
,
L.
,
Cheng
,
H.
, and
Ji
,
B.
,
2020
, “
Numerical Investigation of Unsteady Cloud Cavitating Flow Around the Clark-Y Hydrofoil With Adaptive Mesh Refinement Using OpenFOAM
,”
Ocean Eng.
,
206
, p.
107349
.10.1016/j.oceaneng.2020.107349
2.
Chen
,
Y.
,
Zhang
,
W.
,
Fang
,
D.
,
Sun
,
M.
,
Liu
,
J.
,
Song
,
D.
, and
Zhang
,
X.
,
2021
, “
Vortex Suppression and Flow Pattern Analysis of a Hydrofoil With Parallel Grooves
,”
Processes
,
9
(
5
), p.
816
.10.3390/pr9050816
3.
Fan
,
H.
,
Zhang
,
J.
,
Zhang
,
W.
, and
Liu
,
B.
,
2020
, “
Multiparameter and Multiobjective Optimization Design Based on Orthogonal Method for Mixed Flow Fan
,”
Energies
,
13
(
11
), p.
2819
.10.3390/en13112819
4.
Tao
,
R.
,
Xiao
,
R.
,
Wang
,
F.
, and
Liu
,
W.
,
2018
, “
Cavitation Behavior Study in the Pump Mode of a Reversible Pump-Turbine
,”
Renewable Energy
,
125
, pp.
655
667
.10.1016/j.renene.2018.02.114
5.
Rosli
,
R.
,
Shi
,
W.
,
Aktas
,
B.
,
Norman
,
R.
, and
Atlar
,
M.
,
2019
, “
Underwater Radiated Noise Characteristic of the Hydro-Spinna Tidal Turbine Under Induced Cavitation
,”
Int. J. Smart Grid Clean Energy
,
8
(
4
), pp.
415
421
.10.12720/sgce.8.4.415-421
6.
Stephen
,
C.
, and
Kumaraswamy
,
S.
,
2019
, “
Experimental Determination of Cavitation Characteristics of Low Specific Speed Pump Using Noise and Vibration
,”
J. Inst. Eng. (India) Ser. C
,
100
(
1
), pp.
65
74
.10.1007/s40032-017-0431-5
7.
Lu
,
J.
,
Liu
,
X.
,
Zeng
,
Y.
,
Zhu
,
B.
,
Hu
,
B.
, and
Hua
,
H.
,
2020
, “
Investigation of the Noise Induced by Unstable Flow in a Centrifugal Pump
,”
Energies
,
13
(
3
), p.
589
.10.3390/en13030589
8.
Fang
,
Y.
,
Huang
,
Z.
,
Pu
,
J.
, and
Zhang
,
J.
,
2022
, “
AUV Position Tracking and Trajectory Control Based on Fast-Deployed Deep Reinforcement Learning Method
,”
Ocean Eng.
,
245
, p.
110452
.10.1016/j.oceaneng.2021.110452
9.
Fang
,
D.
,
Huang
,
Z.
,
Zhang
,
J.
,
Hu
,
Z.
, and
Tan
,
J.
,
2022
, “
Flow Pattern Investigation of Bionic Fish by Immersed Boundary-Lattice Boltzmann Method and Dynamic Mode Decomposition
,”
Ocean Eng.
,
248
, p.
110823
.10.1016/j.oceaneng.2022.110823
10.
Putland, R. L., Merchant, N. D., Farcas, A., and Radford, C. A., 2018, “Vessel Noise Cuts Down Communication Space for Vocalizing Fish and Marine Mammals,”
Global Change Biology
, 24(4), pp. 1708–1721.10.1111/gcb.13996
11.
Muthanna
,
C.
, and
Devenport
,
W. J.
,
2004
, “
Wake of a Compressor Cascade With Tip Gap, Part 1: Mean Flow and Turbulence Structure
,”
AIAA J.
,
42
(
11
), pp.
2320
2331
.10.2514/1.5270
12.
Inoue
,
M.
,
Kuroumaru
,
M.
, and
Fukuhara
,
M.
,
1986
, “
Behavior of Tip Leakage Flow Behind an Axial Compressor Rotor
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
7
14
.10.1115/1.3239889
13.
Storer
,
J. A.
, and
Cumpsty
,
N. A.
,
1991
, “
Tip Leakage Flow in Axial Compressors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
252
259
.10.1115/1.2929095
14.
Dreyer
,
M.
,
Decaix
,
J.
,
Münch-Alligné
,
C.
, and
Farhat
,
M.
,
2014
, “
Mind the Gap - Tip Leakage Vortex in Axial Turbines
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
5
), p.
052023
.10.1088/1755-1315/22/5/052023
15.
Lidtke
,
A. K.
,
Turnock
,
S. R.
, and
Humphrey
,
V. F.
,
2016
, “
Characterisation of Sheet Cavity Noise of a Hydrofoil Using the Ffowcs Williams–Hawkings Acoustic Analogy, Computers &Amp
,”
Fluids
,
130
, pp.
8
23
.10.1016/j.compfluid.2016.02.014
16.
Long
,
Y.
,
Deng
,
L.
,
Zhang
,
J.
,
Ji
,
B.
, and
Long
,
X.
,
2021
, “
A New Method of LES Verification and Validation for Attached Turbulent Cavitating Flow
,”
J. Hydrodyn.
,
33
(
1
), pp.
170
174
.10.1007/s42241-021-0004-1
17.
Miorini
,
R. L.
,
Wu
,
H.
, and
Katz
,
J.
,
2012
, “
The Internal Structure of the Tip Leakage Vortex Within the Rotor of an Axial Waterjet Pump
,”
ASME J. Turbomach.
,
134
(
3
), p.
031018
.10.1115/1.4003065
18.
Lidtke
,
A. K.
,
Humphrey
,
V. F.
, and
Turnock
,
S. R.
,
2016
, “
Feasibility Study Into a Computational Approach for Marine Propeller Noise and Cavitation Modelling
,”
Ocean Eng.
,
120
, pp.
152
159
.10.1016/j.oceaneng.2015.11.019
19.
Park
,
J.
, and
Seong
,
W.
,
2017
, “
Experimental Study on the Effect of Number of Bubble Occurrences on Tip Vortex Cavitation Noise Scaling Law
,”
ASME J. Fluids Eng.
,
139
(
6
), p.
061303
.10.1115/1.4035929
20.
Cheng
,
H. Y.
,
Bai
,
X. R.
,
Long
,
X. P.
,
Ji
,
B.
,
Peng
,
X. X.
, and
Farhat
,
M.
,
2020
, “
Large Eddy Simulation of the Tip-Leakage Cavitating Flow With an Insight on How Cavitation Influences Vorticity and Turbulence
,”
Appl. Math. Modell.
,
77
, pp.
788
809
.10.1016/j.apm.2019.08.005
21.
Wang
,
Z.
,
Cheng
,
H.
, and
Ji
,
B.
,
2021
, “
Numerical Investigation of Condensation Shock and Re-Entrant Jet Dynamics Around a Cavitating Hydrofoil Using a Dynamic Cubic Nonlinear Subgrid-Scale Model
,”
Appl. Math. Modell.
,
100
, pp.
410
431
.10.1016/j.apm.2021.08.001
22.
Cheng
,
H.
,
Long
,
X.
,
Ji
,
B.
,
Peng
,
X.
, and
Farhat
,
M.
,
2020
, “
Suppressing Tip-Leakage Vortex Cavitation by Overhanging Grooves
,”
Exp. Fluids
,
61
(
7
), p.
159
.10.1007/s00348-020-02996-6
23.
Zhang
,
J.
,
Fan
,
H.
,
Zhang
,
W.
, and
Xie
,
Z.
,
2019
, “
Energy Performance and Flow Characteristics of a Multiphase Pump With Different Tip Clearance Sizes
,”
Adv. Mech. Eng.
,
11
(
1
), pp.
1
14
.10.1177/1687814018823356
24.
Cheng
,
H.
,
Ji
,
B.
,
Long
,
X.
,
Huai
,
W.
, and
Farhat
,
M.
,
2021
, “
A Review of Cavitation in Tip-Leakage Flow and Its Control
,”
J. Hydrodyn.
,
33
(
2
), pp.
226
242
.10.1007/s42241-021-0022-z
25.
Jiang
,
S.
,
Chen
,
F.
,
Yu
,
J.
,
Chen
,
S.
, and
Song
,
Y.
,
2019
, “
Treatment and Optimization of Casing and Blade Tip for Aerodynamic Control of Tip Leakage Flow in a Turbine Cascade
,”
Aerosp. Sci. Technol.
,
86
, pp.
704
713
.10.1016/j.ast.2019.01.037
26.
Hu
,
Z.
,
Huang
,
C.
,
Huang
,
Z.
, and
Zhang
,
J.
,
2020
, “
A Method of Bending Shrinkage Groove on Vortex Suppression and Energy Improvement for a Hydrofoil With Tip Gap
,”
Processes
,
8
(
10
), p.
1299
.10.3390/pr8101299
27.
Liu
,
Y.
,
Li
,
P.
,
He
,
W.
, and
Jiang
,
K.
,
2020
, “
Numerical Study of the Effect of Surface Grooves on the Aerodynamic Performance of a NACA 4415 Airfoil for Small Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
206
, p.
104263
.10.1016/j.jweia.2020.104263
28.
Kim
,
S.
,
Cheong
,
C.
, and
Park
,
W.-G.
,
2018
, “
Numerical Investigation Into Effects of Viscous Flux Vectors on Hydrofoil Cavitation Flow and Its Radiated Flow Noise
,”
Appl. Sci.
,
8
(
2
), p.
289
.10.3390/app8020289
29.
Yu
,
A.
,
Wang
,
X.
,
Zou
,
Z.
,
Tang
,
Q.
,
Chen
,
H.
, and
Zhou
,
D.
,
2019
, “
Investigation of Cavitation Noise in Cavitating Flows Around an NACA0015 Hydrofoil
,”
Appl. Sci.
,
9
(
18
), p.
3736
.10.3390/app9183736
30.
Song
,
M.
,
Xu
,
L.
,
Peng
,
X.
, and
Tang
,
D.
,
2017
, “
An Acoustic Approach to Determine Tip Vortex Cavitation Inception for an Elliptical Hydrofoil Considering Nuclei-Seeding
,”
Int. J. Multiphase Flow
,
90
, pp.
79
87
.10.1016/j.ijmultiphaseflow.2016.12.008
31.
Park
,
K.
,
Seol
,
H.
,
Choi
,
W.
, and
Lee
,
S.
,
2009
, “
Numerical Prediction of Tip Vortex Cavitation Behavior and Noise Considering Nuclei Size and Distribution
,”
Appl. Acoust.
,
70
(
5
), pp.
674
680
.10.1016/j.apacoust.2008.08.003
32.
Kim
,
S.
,
Cheong
,
C.
, and
Park
,
W.-G.
,
2017
, “
Numerical Investigation on Cavitation Flow of Hydrofoil and Its Flow Noise With Emphasis on Turbulence Models
,”
AIP Adv.
,
7
(
6
), p.
065114
.10.1063/1.4989587
33.
Wang
,
G.
, and
Ostoja-Starzewski
,
M.
,
2007
, “
Large Eddy Simulation of a Sheet/Cloud Cavitation on a NACA0015 Hydrofoil
,”
Appl. Math. Modell.
,
31
(
3
), pp.
417
447
.10.1016/j.apm.2005.11.019
34.
Ji
,
B.
,
Luo
,
X. W.
,
Arndt
,
R. E. A.
,
Peng
,
X.
, and
Wu
,
Y.
,
2015
, “
Large Eddy Simulation and Theoretical Investigations of the Transient Cavitating Vortical Flow Structure Around a NACA66 Hydrofoil
,”
Int. J. Multiphase Flow
,
68
, pp.
121
134
.10.1016/j.ijmultiphaseflow.2014.10.008
35.
Li
,
Z.
,
Qian
,
Z.
, and
Ji
,
B.
,
2020
, “
Transient Cavitating Flow Structure and Acoustic Analysis of a Hydrofoil With Whalelike Wavy Leading Edge
,”
Appl. Math. Modell.
,
85
, pp.
60
88
.10.1016/j.apm.2020.04.004
36.
1955
, “
The Influence of Solid Boundaries Upon Aerodynamic Sound
,”
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
,
231
(
1187
), pp.
505
514
.10.1098/rspa.1955.0191
37.
Kulsrud
,
R. M.
, March
1955
, “
Effect of Magnetic Fields on Generation of Noise by Isotropic Turbulence
,”
Astrophys. J.
,
121
, p.
461
.10.1086/146008
38.
Lighthill
,
M. J.
,
1951
, “
On Sound Generated Aerodynamically I. General Theory
,”
. Proc. R. Soc. London Ser A
,
211
(
1107
), pp.
564
587
.10.1098/rspa.1952.0060
39.
Huang
,
Z.
,
Huang
,
Z.
, and
Fan
,
H.
,
2020
, “
Influence of C Groove on Energy Performance and Noise Source of a NACA0009 Hydrofoil With Tip Clearance
,”
Renewable Energy
,
159
, pp.
726
735
.10.1016/j.renene.2020.05.159
40.
Dreyer
,
M.
,
Decaix
,
J.
,
Münch-Alligné
,
C.
, and
Farhat
,
M.
,
2014
, “
Mind the Gap: A New Insight Into the Tip Leakage Vortex Using Stereo-PIV
,”
Exp. Fluids
,
55
(
11
), p.
1849
.10.1007/s00348-014-1849-7
You do not currently have access to this content.