Abstract

Helical secondary flow has been shown to be beneficial as it has improved bypass graft patency in revascularization through more uniform wall shear stress and improved mixing. An unfavorable by-product of generating helical flow is the proportional increase in pressure drop, which is a critical limiting factor as it constrains the amount of beneficial helicity that can be generated. A validated CFD methodology was used to simulate the development of secondary flow in multiple helical bypass grafts with Newtonian and non-Newtonian rheology. These simulations revealed that the secondary flow is fully developed by the second pitch of a helical geometry for physiologically realistic, unsteady flows, indicating the potential for maximizing secondary flows while at the same time minimizing the induced pressure drops through optimization studies. Building on this, a novel Hybrid Graft Geometry (HGG) was developed which resulted in a 390% increase in cycle-averaged helical intensity while maintaining a mere 2% increase in cycle-averaged pressure drop when compared to graft geometries in the literature. The helical effectivenesshe, defined as the ratio of helical intensity to the induced pressure drop, is a newly created parameter designed to quantify the performance of the helical grafts. The cycle-averaged he clearly reveals the superior performance of the HGG, which is up to 3.6 times higher than other helical grafts tested. For the first time in the open literature, this study presents the proper basis for future optimization studies through he, which should be maximized to improve graft patency.

References

1.
Dunbar
,
S. B.
,
Khavjou
,
O. A.
,
Bakas
,
T.
,
Hunt
,
G.
,
Kirch
,
R. A.
,
Leib
,
A. R.
,
Morrison
,
R. S.
,
Poehler
,
D. C.
,
Roger
,
V. L.
, and
Whitsel
,
L. P.
,
2018
, “
Projected Costs of Informal Caregiving for Cardiovascular Disease: 2015 to 2035: A Policy Statement From the American Heart Association
,”
Circulation
,
137
(
19
), pp. e558-e577.10.1161/CIR.0000000000000570
2.
Ku
,
J. P.
,
Elkins
,
C. J.
, and
Taylor
,
C. A.
,
2005
, “
Comparison of CFD and MRI Flow and Velocities in an In Vitro Large Artery Bypass Graft Model
,”
Ann. Biomed. Eng.
,
33
(
3
), pp.
257
269
.10.1007/s10439-005-1729-7
3.
Caro
,
C. G.
,
Cheshire
,
N. J.
, and
Watkins
,
N.
,
2005
, “
Preliminary Comparative Study of Small Amplitude Helical and Conventional EPTFE Arteriovenous Shunts in Pigs
,”
J. R. Soc., Interface
,
2
(
3
), pp.
261
266
.10.1098/rsif.2005.0044
4.
Bassiouny
,
H. S.
,
White
,
S.
,
Glagov
,
S.
,
Choi
,
E.
,
Giddens
,
D. P.
, and
Zarins
,
C. K.
,
1992
, “
Anastomotic Intimal Hyperplasia: Mechanical Injury or Flow Induced
,”
J. Vasc. Surg.
,
15
(
4
), pp.
708
717
.10.1016/0741-5214(92)90019-5
5.
Geary
,
R. L.
,
Kohler
,
T. R.
,
Vergel
,
S.
,
Kirkman
,
T. R.
, and
Clowes
,
A. W.
,
1994
, “
Time Course of Flow-Induced Smooth Muscle Cell Proliferation and Intimal Thickening in Endothelialized Baboon Vascular Grafts
,”
Circ. Res.
,
74
(
1
), pp.
14
23
.10.1161/01.RES.74.1.14
6.
LoGerfo
,
F. W.
,
Quist
,
W. C.
,
Nowak
,
M. D.
,
Crawshaw
,
H. M.
, and
Haudenschild
,
C. C.
,
1983
, “
Downstream Anastomotic Hyperplasia. A Mechanism of Failure in Dacron Arterial Grafts
,”
Ann. Surg.
,
197
(
4
), pp.
479
83
.10.1097/00000658-198304000-00018
7.
Clowes
,
A. W.
,
Gown
,
A. M.
,
Hanson
,
S. R.
, and
Reidy
,
M. A.
,
1985
, “
Mechanisms of Arterial Graft Failure. 1. Role of Cellular Proliferation in Early Healing of PTFE Prostheses
,”
Am. J. Pathol.
,
118
(
1
), pp.
43
54
.
8.
Huijbregts
,
H. J. T. A. M.
,
Blankestijn
,
P. J.
,
Caro
,
C. G.
,
Cheshire
,
N. J. W.
,
Hoedt
,
M. T. C.
,
Tutein Nolthenius
,
R. P.
, and
Moll
,
F. L.
,
2007
, “
A Helical PTFE Arteriovenous Access Graft to Swirl Flow Across the Distal Anastomosis: Results of a Preliminary Clinical Study
,”
Eur. J. Vasc. Endovasc. Surg.
,
33
(
4
), pp.
472
475
.10.1016/j.ejvs.2006.10.028
9.
Loth
,
F.
,
Fischer
,
P. F.
, and
Bassiouny
,
H. S.
,
2008
, “
Blood Flow in End-to-Side Anastomoses
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
367
393
.10.1146/annurev.fluid.40.111406.102119
10.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.10.1001/jama.282.21.2035
11.
Fan
,
Y.
,
Xu
,
Z.
,
Jiang
,
W.
,
Deng
,
X.
,
Wang
,
K.
, and
Sun
,
A.
,
2008
, “
An S-Type Bypass Can Improve the Hemodynamics in the Bypassed Arteries and Suppress Intimal Hyperplasia Along the Host Artery Floor
,”
J. Biomech.
,
41
(
11
), pp.
2498
2505
.10.1016/j.jbiomech.2008.05.008
12.
Stonebridge
,
P. A.
, and
Brophy
,
C. M.
,
1991
, “
Spiral Laminar Flow in Arteries?
,”
Lancet
,
338
(
8779
), pp.
1360
1361
.10.1016/0140-6736(91)92238-W
13.
Stonebridge
,
P. A.
,
Hoskins
,
P. R.
,
Allan
,
P. L.
, and
Belch
,
J. F. F.
,
1996
, “
Spiral Laminar Flow In Vivo
,”
Clin. Sci.
,
91
(
1
), pp.
17
21
.10.1042/cs0910017
14.
Liu
,
X.
,
Sun
,
A.
,
Fan
,
Y.
, and
Deng
,
X.
,
2015
, “
Physiological Significance of Helical Flow in the Arterial System and Its Potential Clinical Applications
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
3
15
.10.1007/s10439-014-1097-2
15.
Zheng
,
T.
,
Wen
,
J.
,
Jiang
,
W.
,
Deng
,
X.
, and
Fan
,
Y.
,
2014
, “
Numerical Investigation of Oxygen Mass Transfer in a Helical-Type Artery Bypass Graft
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
5
), pp.
549
559
.10.1080/10255842.2012.702764
16.
Liu
,
X.
,
Pu
,
F.
,
Fan
,
Y.
,
Deng
,
X.
,
Li
,
D.
, and
Li
,
S.
,
2009
, “
A Numerical Study on the Flow of Blood and the Transport of LDL in the Human Aorta: The Physiological Significance of the Helical Flow in the Aortic Arch
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
297
(
1
), pp.
H163
H170
.10.1152/ajpheart.00266.2009
17.
Zhan
,
F.
,
Fan
,
Y.
, and
Deng
,
X.
,
2010
, “
Swirling Flow Created in a Glass Tube Suppressed Platelet Adhesion to the Surface of the Tube: Its Implication in the Design of Small-Caliber Arterial Grafts
,”
Thromb. Res.
,
125
(
5
), pp.
413
418
.10.1016/j.thromres.2009.02.011
18.
Cookson
,
A. N.
,
Doorly
,
D. J.
, and
Sherwin
,
S. J.
,
2009
, “
Mixing Through Stirring of Steady Flow in Small Amplitude Helical Tubes
,”
Ann. Biomed. Eng.
,
37
(
4
), pp.
710
721
.10.1007/s10439-009-9636-y
19.
Kamada
,
H.
,
Imai
,
Y.
,
Nakamura
,
M.
,
Ishikawa
,
T.
, and
Yamaguchi
,
T.
,
2017
, “
Shear-Induced Platelet Aggregation and Distribution of Thrombogenesis at Stenotic Vessels
,”
Microcirculation
,
24
(
4
), p.
e12355
.10.1111/micc.12355
20.
Cookson
,
A. N.
,
Doorly
,
D. J
and., and
Sherwin
,
S. J.
,
2010
, “
Using Coordinate Transformation of Navier–Stokes Equations to Solve Flow in Multiple Helical Geometries
,”
J. Comput. Appl. Math.
,
234
(
7
), pp.
2069
2079
.10.1016/j.cam.2009.08.065
21.
Cookson
,
A.
,
Doorly
,
D.
, and
Sherwin
,
S.
,
2019
, “
Efficiently Generating Mixing by Combining Differing Small Amplitude Helical Geometries
,”
Fluids
,
4
(
2
), p.
59
.10.3390/fluids4020059
22.
Ha
,
H.
,
Hwang
,
D.
,
Choi
,
W.-R.
,
Baek
,
J.
, and
Lee
,
S. J.
,
2014
, “
Fluid-Dynamic Optimal Design of Helical Vascular Graft for Stenotic Disturbed Flow
,”
PLoS One
,
9
(
10
), p.
e111047
.10.1371/journal.pone.0111047
23.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Grigioni
,
M.
, and
Redaelli
,
A.
,
2007
, “
Helical Flow as Fluid Dynamic Signature for Atherogenesis Risk in Aortocoronary Bypass. A Numeric Study
,”
J. Biomech.
,
40
(
3
), pp.
519
534
.10.1016/j.jbiomech.2006.02.017
24.
Van Canneyt
,
K.
,
Morbiducci
,
U.
,
Eloot
,
S.
,
Santis
,
G. D.
,
Segers
,
P.
, and
Verdonck
,
P.
,
2013
, “
A Computational Exploration of Helical Arterio-Venous Graft Designs
,”
J. Biomech.
,
46
(
2
), pp.
345
353
.10.1016/j.jbiomech.2012.10.027
25.
Gallo
,
D.
,
Steinman
,
D. A.
,
Bijari
,
P. B.
, and
Morbiducci
,
U.
,
2012
, “
Helical Flow in Carotid Bifurcation as Surrogate Marker of Exposure to Disturbed Shear
,”
J. Biomech.
,
45
(
14
), pp.
2398
2404
.10.1016/j.jbiomech.2012.07.007
26.
Kabinejadian
,
F.
,
McElroy
,
M.
,
Ruiz-Soler
,
A.
,
Leo
,
H. L.
,
Slevin
,
M. A.
,
Badimon
,
L.
, and
Keshmiri
,
A.
,
2016
, “
Numerical Assessment of Novel Helical/Spiral Grafts With Improved Hemodynamics for Distal Graft Anastomoses
,”
PLoS One
,
11
(
11
), p.
e0165892
.10.1371/journal.pone.0165892
27.
Papaharilaou
,
Y.
,
Doorly
,
D. J.
, and
Sherwin
,
S. J.
,
2002
, “
The Influence of Out-of-Plane Geometry on Pulsatile Flow Within a Distal End-to-Side Anastomosis
,”
J. Biomech.
,
35
(
9
), pp.
1225
1239
.10.1016/S0021-9290(02)00072-6
28.
Wen
,
J.
,
Zheng
,
T.
,
Jiang
,
W.
,
Deng
,
X.
, and
Fan
,
Y.
,
2011
, “
A Comparative Study of Helical-Type and Traditional-Type Artery Bypass Grafts: Numerical Simulation
,”
ASAIO J. Artif. Organ Res. Dev.
,
57
(
5
), pp.
399
406
.10.1097/MAT.0b013e3182246e0a
29.
Zheng
,
T.
,
Fan
,
Y.
,
Xiong
,
Y.
,
Jiang
,
W.
, and
Deng
,
X.
,
2009
, “
Hemodynamic Performance Study on Small Diameter Helical Grafts
,”
ASAIO J.
,
55
(
3
), pp.
192
199
.10.1097/MAT.0b013e31819b34f2
30.
Liu
,
X.
,
Wang
,
L.
,
Wang
,
Z.
,
Li
,
Z.
,
Kang
,
H.
,
Fan
,
Y.
,
Sun
,
A.
, and
Deng
,
X.
,
2016
, “
Bioinspired Helical Graft With Taper to Enhance Helical Flow
,”
J. Biomech.
,
49
(
15
), pp.
3643
3650
.10.1016/j.jbiomech.2016.09.028
31.
Ruiz-Soler
,
A.
,
Kabinejadian
,
F.
,
Slevin
,
M. A.
,
Bartolo
,
P. J.
, and
Keshmiri
,
A.
,
2017
, “
Optimisation of a Novel Spiral-Inducing Bypass Graft Using Computational Fluid Dynamics
,”
Sci. Rep.
,
7
(
1
), p.
1865
.10.1038/s41598-017-01930-x
32.
Sun
,
A.
,
Fan
,
Y.
, and
Deng
,
X.
,
2010
, “
Numerical Comparative Study on the Hemodynamic Performance of a New Helical Graft With Noncircular Cross Section and Swirlgraft
,”
Artif. Organs
,
34
(
1
), pp.
22
27
.10.1111/j.1525-1594.2009.00797.x
33.
Zhang
,
Z.
,
Fan
,
Y.
,
Deng
,
X.
,
Wang
,
G.
,
Zhang
,
H.
, and
Guidoin
,
R.
,
2008
, “
Simulation of Blood Flow in a Small-Diameter Vascular Graft Model With a Swirl (Spiral) Flow Guider
,”
Sci. China.Ser. C, Life Sci./Chin. Acad. Sci.
,
51
(
10
), pp.
913
921
.10.1007/s11427-008-0118-5
34.
Zheng
,
T.
,
Wang
,
W.
,
Jiang
,
W.
,
Deng
,
X.
, and
Fan
,
Y.
,
2012
, “
Assessing Hemodynamic Performances of Small Diameter Helical Grafts: Transient Simulation
,”
J. Mech. Med. Biol.
,
12
(
01
), p.
1250008
.10.1142/S0219519412004429
35.
Loth
,
F.
,
1993
, “
Velocity and Wall Shear Measurements Inside a Vascular Graft Model Under Steady and Pulsatile Flow Conditions
,”
Georgia Institute of Technology
, Atlanta, Georgia.
36.
Loth
,
F.
,
Jones
,
S. A.
,
Giddens
,
D. P.
,
Bassiouny
,
H. S.
,
Glagov
,
S.
, and
Zarins
,
C. K.
,
1997
, “
Measurements of Velocity and Wall Shear Stress Inside a PTFE Vascular Graft Model Under Steady Flow Conditions
,”
ASME J. Biomech. Eng.
,
119
(
2
), pp.
187
194
.10.1115/1.2796079
37.
Nisco
,
G. D.
,
Gallo
,
D.
,
Siciliano
,
K.
,
Tasso
,
P.
,
Lodi Rizzini
,
M.
,
Mazzi
,
V.
,
Calò
,
K.
,
Antonucci
,
M.
, and
Morbiducci
,
U.
,
2020
, “
Hemodialysis Arterio-Venous Graft Design Reducing the Hemodynamic Risk of Vascular Access Dysfunction
,”
J. Biomech.
,
100
(
February
), p.
109591
.10.1016/j.jbiomech.2019.109591
38.
Kute
,
S. M.
, and
Vorp
,
D. A.
,
2001
, “
The Effect of Proximal Artery Flow on the Hemodynamics at the Distal Anastomosis of a Vascular Bypass Graft: Computational Study
,”
ASME J. Biomech. Eng.
,
123
(
3
), pp.
277
283
.10.1115/1.1374203
39.
Leuprecht
,
A.
,
Perktold
,
K.
,
Prosi
,
M.
,
Berk
,
T.
,
Trubel
,
W.
, and
Schima
,
H.
,
2002
, “
Numerical Study of Hemodynamics and Wall Mechanics in Distal End-to-Side Anastomoses of Bypass Grafts
,”
J. Biomech.
,
35
(
2
), pp.
225
236
.10.1016/S0021-9290(01)00194-4
You do not currently have access to this content.