Abstract

The article illustrates the results of an exploratory study on the effectiveness of maximum likelihood Bayesian estimation in the identification of cavitation instabilities in axial inducers using the blade-to-blade pressure measured by a single transducer flush-mounted on the impeller casing. The typical azimuthal distribution of the pressure in the blade channels is parameterized and modulated in space and time for theoretically reproducing the expected pressure generated by known forms of cavitation instabilities (cavitation surge auto-oscillations, n-lobed synchronous/asynchronous rotating cavitation, and higher-order surge/rotating cavitation modes). The power spectra of the theoretical pressure so obtained in the rotating frame are transformed in the stationary frame, corrected for frequency broadening effects, and parametrically fitted by maximum likelihood estimation to the measurements of the pressure on the inducer casing just downstream of the blade leading edges. In addition to its fundamental frequency, each form of instability generates a characteristic spectral distribution of sidebands. The identification uses this information for successfully discriminating flow oscillation modes occurring simultaneously with intensities differing by up to one order of magnitude. The method returns the estimates of the model parameters and their standard errors, allowing one to assess the accuracy and statistical significance of the identification. The results first demonstrate that elementary maximum likelihood Bayesian identification is indeed capable to effectively detect and characterize the occurrence of flow instabilities in cavitating inducers at a fraction of the experimental and postprocessing costs and complexities of traditional cross-correlation methods.

References

1.
Stripling
,
L. B.
,
1962
, “
Cavitation in Turbopumps—Part 2
,”
ASME J. Basic Eng.
,
84
(
3
), pp.
339
349
.10.1115/1.3657315
2.
Stripling
,
L. B.
, and
Acosta
,
A. J.
,
1962
, “
Cavitation in Turbopumps—Part 1
,”
ASME J. Basic Eng.
,
84
(
3
), pp.
326
338
.10.1115/1.3657314
3.
Jakobsen
,
J. K.
, and
Keller
,
R. B. J.
,
1971
,
Liquid Rocket Engine Turbopump Inducers
, National Aeronautics and Space Administration,
Lewis Research Center
,
Cleveland, OH
, p.
100
.
4.
Rubin
,
S.
,
1966
, “
Longitudinal Instability of Liquid Rockets Due to Propulsion Feedback (POGO)
,”
J. Spacecr. Rockets
,
3
(
8
), pp.
1188
1195
.10.2514/3.28626
5.
Sack
,
L. E.
, and
Nottage
,
H. B.
,
1965
, “
System Oscillations Associated to Cavitating Inducers
,”
ASME J. Basic Eng.
,
87
(
4
), pp.
917
924
.10.1115/1.3650844
6.
Rosenmann
,
W.
,
1965
,
Experimental Investigations of Hydrodynamically Induced Shaft Forces With a Three Bladed Inducer
,
National Aeronautics and Space Administration
,
Washington, DC
.
7.
Brennen
,
C.
, and
Acosta
,
A. J.
,
1973
, “
Theoretical, Quasi-Static Analysis of Cavitation Compliance in Turbopumps
,”
J. Spacecr. Rockets
,
10
(
3
), pp.
175
180
.10.2514/3.27748
8.
Brennen
,
C.
, and
Acosta
,
A. J.
,
1976
, “
The Dynamic Transfer Function for a Cavitating Inducer
,”
ASME J. Fluids Eng.
,
98
(
2
), pp.
182
191
.10.1115/1.3448255
9.
Kamjio
,
K.
,
Shimura
,
T.
, and
Watanabe
,
M.
,
1977
, “
An Experimental Investigation of Cavitating Inducer Instability
,”
ASME
Paper No. 77-WA/FW-14. 10.1115/77-WA/FW-14
10.
Ng
,
S. L.
, and
Brennen
,
C.
,
1978
, “
Experiments on the Dynamic Behavior of Cavitating Pumps
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
166
176
.10.1115/1.3448625
11.
Braisted
,
D. M.
,
1980
, “
Cavitation Induced Instabilities Associated With Turbomachines
,”
Ph.D. dissertation
,
California Institute of Technology
,
Pasadena, CA
.linkhttps://resolver.caltech.edu/CaltechET D:etd-04232004-091330
12.
Franz
,
R. J.
,
1989
, “
Experimental Investigation of the Effect of Cavitation on the Rotordynamic Forces on a Whirling Centrifugal Pump Impeller
,”
Ph.D. dissertation
,
California Institute of Technology
,
Pasadena, CA
.https://resolver.caltech.edu/CaltechET D:etd-02022007-133417
13.
Bhattacharyya
,
A.
,
1994
, “
Internal Flows and Force Matrices in Axial Flow Inducers
,”
Ph.D. dissertation
,
California Institute of Technology
,
Pasadena, CA
.https://resolver.caltech.edu/CaltechAUT HORS:20140429-104737906
14.
Bhattacharyya
,
A.
,
Acosta
,
A. J.
,
Brennen
,
C. E.
, and
Caughey
,
T. K.
,
1997
, “
Rotordynamic Forces in Cavitating Inducers
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
768
774
.10.1115/1.2819496
15.
Hashimoto
,
T.
,
Yoshida
,
H.
,
Funatsu
,
S.
,
Hishimoto
,
J.
,
Kamijo
,
K.
, and
Tsujimoto
,
Y.
,
1
997, “
Rotating Cavitation in Three and Four-Bladed Inducers
,”
33rd AIAA/ASME7SAE/ASEE Joint Propulsion Conference and Exhibit
, Seattle, WA, July 6–9.https://doi.org/10.2514/6.1997-3209
16.
Hashimoto
,
T.
,
Yoshida
,
H.
,
Watanabe
,
M.
,
Kamijo
,
K.
, and
Tsujimoto
,
Y.
,
1997
, “
Experimental Study on Rotating Cavitation of Rocket Propellant Pump Inducers
,”
J. Propul. Power
,
13
(
4
), pp.
488
494
.10.2514/2.5210
17.
Shimura
,
T.
,
Yoshida
,
M.
,
Kamijo
,
K.
,
Uchiumi
,
M.
, and
Yasutomi
,
Y.
,
2002
, “
Cavitation Induced Vibration Caused by Rotating-Stall-Type Phenomenon in LH2 Turbopump
,”
Proceedings of the Ninth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-9)
, Honolulu, HI, Feb. 10–14, pp.
41
46
.10.1299/jsmeb.45.41
18.
Shimura
,
T.
,
Shimagaki
,
M.
,
Watanabe
,
Y.
,
Hasegawa
,
S.
, and
Tanaka
,
S.
,
2003
, “
Cavitation Induced Vibration of LE-7A Oxygen Turpopump
,” Fifth International Symposium on Cavitation (CAV 2003), Osaka, Japan, Nov. 1–4, p. OS-4-009.
19.
Tsujimoto
,
Y.
,
Yoshida
,
Y.
,
Maekawa
,
Y.
,
Watanabe
,
S.
, and
Hashimoto
,
T.
,
1997
, “
Observations of Oscillating Cavitation of an Inducer
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
775
781
.10.1115/1.2819497
20.
Cervone
,
A.
,
Testa
,
R.
,
Bramanti
,
C.
,
Rapposelli
,
E.
, and
d'Agostino
,
L.
,
2005
, “
Thermal Effects on Cavitation Instabilities in Helical Inducers
,”
J. Propul. Power
,
21
(
5
), pp.
893
899
.10.2514/1.12582
21.
Cervone
,
A.
,
Bramanti
,
C.
,
Rapposelli
,
E.
,
Torre
,
L.
, and
d'Agostino
,
L.
,
2006
, “
Experimental Characterization of Cavitation Instabilities in a Two-Bladed Axial Inducer
,”
J. Propul. Power
,
22
(
6
), pp.
1389
1395
.10.2514/1.19637
22.
Torre
,
L.
,
Cervone
,
A.
,
Pasini
,
A.
, and
d'Agostino
,
L.
,
2011
, “
Experimental Characterization of Thermal Cavitation Effects on Space Rocket Axial Inducers
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111303
.10.1115/1.4005257
23.
Coutier-Delgosha
,
O.
,
Dazin
,
A.
,
Caignaert
,
G.
, and
Bois
,
G.
,
2012
, “
Analysis of Cavitation Instabilities in a Four-Blade Inducer
,”
Int. J. Rotating Mach.
,
2012
, p.
213907
.10.1155/2012/213907
24.
Brennen
,
C. E.
,
2012
, “
A Review of the Dynamics of Cavitating Pumps
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
1
), p.
012001
.10.1088/1755-1315/15/1/012001
25.
d'Agostino
,
L.
,
2013
, “
On the Hydrodynamics of Rocket Propellant Engine Inducers and Turbopumps
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
52
, p.
012004
.https://iopscience.iop.org/article/10.1088/1757-899X/52/1/012004/pdf
26.
Pace
,
G.
,
Valentini
,
D.
,
Pasini
,
A.
,
Torre
,
L.
,
Fu
,
Y. X.
, and
d'Agostino
,
L.
,
2015
, “
Geometry Effects on Flow Instabilities of Different Three-Bladed Inducers
,”
ASME J. Fluids Eng.
,
137
(
4
), p. 0
11102
.10.1115/1.4029113
27.
Pace
,
G.
,
Valentini
,
D.
,
Pasini
,
A.
,
Hadavandi
,
R.
, and
d'Agostino
,
L.
,
2019
, “
Analysis of Flow Instabilities on a Three-Bladed Axial Inducer in Fixed and Rotating Frames
,”
ASME J. Fluids Eng.
,
141
(
4
), p.
041104
.10.1115/1.4041731
28.
Lettieri
,
C.
,
Spakovszky
,
Z.
,
Jackson
,
D.
, and
Schwille
,
J.
,
2017
, “
Characterization of Cavitation Instabilities in a Four-Bladed Turbopump Inducer
,”
J. Propul. Power
,
34
(
2
), pp.
1
11
.10.2514/6.2016-4986
29.
Brennen
,
C. E.
,
1994
, Hydrodynamics of Pumps,
Concepts ETI/Oxford University Press
, 9781107002371, pp.
1
270
.https://authors.library.caltech.edu/25019/2/HydroPmp.pdf
30.
Oppenheim
,
B. W.
, and
Rubin
,
S.
,
1993
, “
Advanced POGO Stability Analysis of Liquid Rockets
,”
J. Spacecr. Rockets
,
30
(
3
), pp.
360
373
.10.2514/3.25524
31.
Larsen
,
C. E.
,
2008
, “
NASA Experience With POGO in Human Spaceflight Vehicles
,”
NATO RTO Symposium ATV-152 on Limit-Cycle Oscillations and Other Amplitude-Limited, Self-Excited Vibrations
, Norway, pp. 1–23, Report No. RTO-MP-AVT-152.https://ntrs.nasa.gov/citations/20080018689
32.
Hori
,
S.
, and
Brennen
,
C. E.
,
2011
, “
Dynamic Response to Global Oscillation of Propulsion Systems With Cavitating Pumps
,”
J. Spacecr. Rockets
,
48
(
4
), pp.
599
608
.10.2514/1.51945
33.
Goirand
,
B.
,
Mertz
,
A. L.
,
Jousselin
,
F.
, and
Rebattet
,
C.
,
1992
, “
Experimental Investigations of Radial Loads Induced by Partial Cavitation With Liquid Hydrogen Inducer
,”
Presented at the 3rd International Conference on Cavitation
, Cambridge, UK, Dec. 9-12, pp.
263
269
.https://ui.adsabs.harvard.edu/abs/1992ST IN...9318094G/abstract
34.
Pasini
,
A.
,
Torre
,
L.
,
Cervone
,
A.
, and
d'Agostino
,
L.
,
2011
, “
Continuous Spectrum of the Rotordynamic Forces on a Four Bladed Inducer
,”
ASME J. Fluids Eng.
,
133
(
12
), p.
121101
.10.1115/1.4005258
35.
Matsuyama, K., Ito, T., Ohigashi, H., Yasui, M., and Manako, H.
,
2002
, “H-IIA Rocket Engine Development,” Technical Review, Mitsubishi Heavy Industries, Ltd., pp.
51
56
.
36.
Tsujimoto
,
Y.
,
2006
, “Cavitation Instabilities in Inducers,” Neuilly-sur-Seine, France, Report No. RTO-EN-AVT-143, Paper 8, pp.
1
26
.
37.
Pace
,
G.
,
Valentini
,
D.
,
Pasini
,
A.
,
Hadavandi
,
R.
, and
d'Agostino
,
L.
,
2019
, “
Analysis of Flow Instabilities on a Three-Bladed Axial Inducer in the Fixed and Rotating Frames
,”
ASME J. Fluids Eng.
, 141(4), pp.
16
21
.10.1115/1.4041731
38.
d'Agostino
,
L.
,
Torre
,
L.
,
Pasini
,
A.
, and
Cervone
,
A.
,
2008
, “
A Reduced Order Model for Preliminary Design and Performance Prediction of Tapered Inducers
,”
12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-12)
, Honolulu, HI, Feb. 17–22, pp.
1113031
1113038
.10.1115/1.2979007
39.
d'Agostino
,
L.
,
Torre
,
L.
,
Pasini
,
A.
,
Baccarella
,
D.
,
Cervone
,
A.
, and
Milani
,
A.
,
2008
, “
A Reduced Order Model for Preliminary Design and Performance Prediction of Tapered Inducers: Comparison With Numerical Simulations
,”
AIAA
Paper No. 2008-5119. 10.2514/6.2008-5119
40.
Cervone
,
A.
,
Bramanti
,
C.
,
Torre
,
L.
,
Fotino
,
D.
, and
d'Agostino
,
L.
,
2007
, “
Setup of a High-Speed Optical System for the Characterization of Instabilities Generated by Cavitation
,”
ASME J. Fluids Eng.
,
129
(
7
), pp.
877
885
.10.1115/1.2742738
41.
Adamczyk
,
J. J.
,
1985
, “
Model Equations for Simulating Flows in Multistage Turbomachinery
,”
ASME
Paper No. 85-GT-226. 10.1115/85-GT-226
42.
Pasini
,
A.
,
Hadavandi
,
R.
,
Valentini
,
D.
,
Pace
,
G.
, and
d'Agostino
,
L.
,
2019
, “
Dynamics of the Blade Channel of an Inducer Under Cavitation-Induced Instabilities
,”
ASME J. Fluids Eng.
,
141
, p. 0
41103
.10.1115/1.4041728
You do not currently have access to this content.