Abstract

This study investigates the turbulent flow properties experimentally in the vicinity of two side-by-side circular cylinders, along with the influence of the third cylinder of the same dimension placed in the upstream and successively in the downstream forming an equilateral triangle. Three-dimensional stereoscopic particle image velocimetry (PIV) was employed to collect the instantaneous velocity data around the arrangements. The study highlights the prime parameters of turbulence such as the mean velocities, Reynolds stresses, turbulent kinetic energy (TKE), quadrant analysis, and Q-criteria for vortices, which are responsible for the development of various problems such as scour-hole around the cylindrical pier arrangements, disturbance around industrial and marine structures. The spectral analysis was performed to examine the energy distributions, vortex-shedding frequencies with corresponding Strouhal numbers. Dominant vorticity locations were identified from the contours of Q-criteria. The magnitude of turbulence characteristics was reduced by 15–20% (turbulence intensity reduced by 20% and TKE by 15%) when the third cylinder was placed the upstream of side-by-side cylinder group. Streamlines are also studied to visualize the flow patterns for a better understanding of physics in the presence of the third cylinder. The maximum energy of vortices obtained from the spectrum analysis showed that the vortices generated were less when the third cylinder is placed upstream.

References

1.
Laursen
,
E. M.
, and
Toch
,
A.
,
1956
,
Scour Around Bridge Piers and Abutments
, Vol.
4
,
Iowa Highway Research Board
,
Ames, IA
.
2.
Sumner
,
D.
,
Price
,
S. J.
, and
Paidoussis
,
M. P.
,
1999
, “
Tandem Cylinders in Impulsively Started Flow
,”
J. Fluids Struct.
,
13
(
7–8
), pp.
955
965
.10.1006/jfls.1999.0234
3.
Alam
,
M. M.
, and
Zhou
,
Y.
,
2007
, “
Flow Around Two Side-by-Side Closely Spaced Circular Cylinders
,”
J. Fluids Struct.
,
23
(
5
), pp.
799
805
.10.1016/j.jfluidstructs.2006.12.002
4.
Ataie-Ashtiani
,
B.
, and
Aslani-Kordkandi
,
A.
,
2012
, “
Flow Field Around Side-by-Side Piers With and Without a Scour Hole
,”
Eur. J. Mech.-B/Fluids
,
36
, pp.
152
166
.10.1016/j.euromechflu.2012.03.007
5.
Keshavarzi
,
A.
,
Shrestha
,
C. K.
,
Zahedani
,
M. R.
,
Ball
,
J.
, and
Khabbaz
,
H.
,
2018
, “
Experimental Study of Flow Structure Around Two Inline Bridge Piers
,”
Proc. Inst. Civil Eng. Water Manag.
,
171
(
6
), pp.
311
327
.10.1680/jwama.16.00104
6.
Zhou
,
K.
,
Duan
,
J. G.
, and
Bombardelli
,
F. A.
,
2020
, “
Experimental and Theoretical Study of Local Scour Around Three-Pier Group
,”
J. Hydraul. Eng.
,
146
(
10
), p.
04020069
.10.1061/(ASCE)HY.1943-7900.0001794
7.
Yang
,
Y.
,
Qi
,
M.
,
Li
,
J.
, and
Ma
,
X.
,
2021
, “
Experimental Study of Flow Field Around Pile Groups Using PIV
,”
Exp. Therm. Fluid Sci.
,
120
, p.
110223
.10.1016/j.expthermflusci.2020.110223
8.
Zhou
,
Y.
,
Zhang
,
H. J.
, and
Yiu
,
M. W.
,
2002
, “
The Turbulent Wake of Two Side-by-Side Circular Cylinders
,”
J. Fluid Mech.
,
458
, pp.
303
332
.10.1017/S0022112002007887
9.
Alam
,
M. M.
, and
Zhou
,
Y.
,
2013
, “
Intrinsic Features of Flow Around Two Side-by-Side Square Cylinders
,”
Phys. Fluids
,
25
(
8
), p.
085106
.10.1063/1.4817670
10.
Yen
,
S. C.
, and
Liu
,
J. H.
,
2011
, “
Wake Flow Behind Two Side-by-Side Square Cylinders
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
41
51
.10.1016/j.ijheatfluidflow.2010.09.005
11.
Alam
,
M. M.
,
Zhou
,
Y.
, and
Wang
,
X. W.
,
2011
, “
The Wake of Two Side-by-Side Square Cylinders
,”
J. Fluid Mech.
,
669
, pp.
432
471
.10.1017/S0022112010005288
12.
Burattini
,
P.
, and
Agrawal
,
A.
,
2013
, “
Wake Interaction Between Two Side-by-Side Square Cylinders in Channel Flow
,”
Comput. Fluids
,
77
, pp.
134
142
.10.1016/j.compfluid.2013.02.014
13.
Zhou
,
Y.
,
Nagata
,
K.
,
Sakai
,
Y.
,
Watanabe
,
T.
,
Ito
,
Y.
, and
Hayase
,
T.
,
2020
, “
Energy Transfer in Turbulent Flows Behind Two Side-by-Side Square Cylinders
,”
J. Fluid Mech.
,
903
(A4), pp. 1-31.10.1017/jfm.2020.611
14.
More
,
B. S.
,
Dutta
,
S.
, and
Gandhi
,
B. K.
,
2020
, “
Flow Around Three Side-by-Side Square Cylinders and the Effect of the Cylinder Oscillation
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021303
.10.1115/1.4045206
15.
Adrian
,
R. J.
, and
Westerweel
,
J.
,
2011
,
Particle Image Velocimetry (No. 30)
,
Cambridge University Press
, Cambridge, UK.
16.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
, “
PIV Uncertainty and Measurement Accuracy
,”
Particle Image Velocimetry
,
Springer
,
Cham
, pp.
203
241
.
17.
Chiew
,
Y. M.
, and
Melville
,
B. W.
,
1987
, “
Local Scour Around Bridge Piers
,”
J. Hydraul. Res.
,
25
(
1
), pp.
15
26
.10.1080/00221688709499285
18.
Shen
,
H. W.
,
Schneider
,
V. R.
, and
Karaki
,
S.
,
1969
, “
Local Scour Around Bridge Piers
,”
J. Hydraul. Div.
,
95
(
6
), pp.
1919
1940
.10.1061/JYCEAJ.0002197
19.
Gautam
,
P.
,
Eldho
,
T. I.
,
Mazumder
,
B. S.
, and
Behera
,
M. R.
,
2019
, “
Experimental Study of Flow and Turbulence Characteristics Around Simple and Complex Piers Using PIV
,”
Exp. Therm. Fluid Sci.
,
100
, pp.
193
206
.10.1016/j.expthermflusci.2018.09.010
20.
Misuriya
,
G.
,
Eldho
,
T. I.
, and
Mazumder
,
B. S.
,
2021
, “
Higher-Order Turbulence Around Different Circular Cylinders Using Particle Image Velocimetry
,”
ASME J. Fluids Eng.
,
143
(
9
), p. 091202.10.1115/1.4050591
21.
Schlichting
,
H.
, and
Kestin
,
J.
,
1961
,
Boundary Layer Theory
, Vol.
121
,
McGraw-Hill
,
New York
.
22.
Cardoso
,
A. H.
,
Graf
,
W. H.
, and
Gust
,
G.
,
1989
, “
Uniform Flow in a Smooth Open Channel
,”
J. Hydraul. Res.
,
27
(
5
), pp.
603
616
.10.1080/00221688909499113
23.
Yang
,
S. Q.
,
Tan
,
S. K.
, and
Lim
,
S. Y.
,
2004
, “
Velocity Distribution and Dip-Phenomenon in Smooth Uniform Open Channel Flows
,”
J. Hydraul. Eng.
,
130
(
12
), pp.
1179
1186
.10.1061/(ASCE)0733-9429(2004)130:12(1179)
24.
Absi
,
R.
,
2011
, “
An Ordinary Differential Equation for Velocity Distribution and Dip-Phenomenon in Open Channel Flows
,”
J. Hydraul. Res.
,
49
(
1
), pp.
82
89
.10.1080/00221686.2010.535700
25.
Tachie
,
M. F.
,
Bergstrom
,
D. J.
, and
Balachandar
,
R.
,
2003
, “
Roughness Effects in Low-Re θ Open-Channel Turbulent Boundary Layers
,”
Exp. Fluids
,
35
(
4
), pp.
338
346
.10.1007/s00348-003-0654-5
26.
Nezu
,
I.
, and
Rodi
,
W.
,
1986
, “
Open-Channel Flow Measurements With a Laser Doppler Anemometer
,”
J. Hydraul. Eng.
,
112
(
5
), pp.
335
355
.10.1061/(ASCE)0733-9429(1986)112:5(335)
27.
Pope
,
S. B.
, and
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
28.
Maity
,
H.
, and
Mazumder
,
B. S.
,
2014
, “
Experimental Investigation of the Impacts of Coherent Flow Structures Upon Turbulence Properties in Regions of Crescentic Scour
,”
Earth Surf. Process. Landforms
,
39
(
8
), pp.
995
1013
.10.1002/esp.3496
29.
Dey
,
S.
,
Swargiary
,
D.
,
Sarkar
,
S.
,
Fang
,
H.
, and
Gaudio
,
R.
,
2018
, “
Turbulence Features in a Wall-Wake Flow Downstream of a Wall-Mounted Vertical Cylinder
,”
Eur. J. Mech.-B/Fluids
,
69
, pp.
46
61
.10.1016/j.euromechflu.2018.01.003
30.
Sarkar
,
K.
, and
Mazumder
,
B. S.
,
2018
, “
Higher-Order Moments With Turbulent Length-Scales and Anisotropy Associated With Flow Over Dune Shapes in Tidal Environment
,”
Phys. Fluids
,
30
(
10
), p.
106602
.10.1063/1.5038433
31.
Chen
,
Q.
,
Zhong
,
Q.
,
Qi
,
M.
, and
Wang
,
X.
,
2015
, “
Comparison of Vortex Identification Criteria for Planar Velocity Fields in Wall Turbulence
,”
Phys. Fluids
,
27
(
8
), p.
085101
.10.1063/1.4927647
32.
Yu
,
Y.
,
Shrestha
,
P.
,
Alvarez
,
O.
,
Nottage
,
C.
, and
Liu
,
C.
,
2020
, “
Correlation Analysis Among Vorticity, Q Method and Liutex
,”
J. Hydrodyn.
,
32
(
6
), pp.
1207
1211
.10.1007/s42241-020-0069-2
33.
Yu
,
Y.
,
Shrestha
,
P.
,
Alvarez
,
O.
,
Nottage
,
C.
, and
Liu
,
C.
,
2021
, “
Investigation of Correlation Between Vorticity, Q, λci, λ2, Δ and Liutex
,”
Comput. Fluids
,
225
, p.
104977
.10.1016/j.compfluid.2021.104977
34.
Stull
,
R. B.
,
1988
,
An Introduction to Boundary Layer Meteorology
,
Springer Science & Business Media
, Berlin, Germany, p.
13
.
35.
Morton
,
C.
, and
Yarusevych
,
S.
,
2014
, “
Vortex Dynamics in the Turbulent Wake of a Single Step Cylinder
,”
ASME J. Fluids Eng.
,
136
(
3
), p. 031204.10.1115/1.4026196
36.
Chatterjee
,
D.
,
Mazumder
,
B. S.
,
Ghosh
,
S.
, and
Debnath
,
K.
,
2021
, “
Turbulent Flow Characteristics Over Forward-Facing Obstacle
,”
J. Turbul.
,
22
(
3
), pp.
141
179
.10.1080/14685248.2020.1854461
37.
Roshko
,
A.
,
1961
, “
Experiments on the Flow Past a Circular Cylinder at Very High Reynolds Number
,”
J. Fluid Mech.
,
10
(
3
), pp.
345
356
.10.1017/S0022112061000950
38.
Levi
,
E.
,
1983
, “
A Universal Strouhal Law
,”
J. Eng. Mech.
,
109
(
3
), pp.
718
727
.10.1061/(ASCE)0733-9399(1983)109:3(718)
39.
Ünal
,
U. O.
, and
Atlar
,
M.
,
2010
, “
An Experimental Investigation Into the Effect of Vortex Generators on the Near-Wake Flow of a Circular Cylinder
,”
Exp. Fluids
,
48
(
6
), pp.
1059
1079
.10.1007/s00348-009-0791-6
40.
Katopodes
,
N. D.
,
2018
,
Free-Surface Flow: Shallow Water Dynamics
,
Butterworth-Heinemann
, Oxford, UK.
41.
Venditti
,
J. G.
, and
Bennett
,
S. J.
,
2000
, “
Spectral Analysis of Turbulent Flow and Suspended Sediment Transport Over Fixed Dunes
,”
J. Geophys. Res. Oceans
,
105
(
C9
), pp.
22035
22047
.10.1029/2000JC900094
42.
Vijayasree
,
B. A.
,
Eldho
,
T. I.
, and
Mazumder
,
B. S.
,
2020
, “
Turbulence Statistics of Flow Causing Scour Around Circular and Oblong Piers
,”
J. Hydraul. Res.
,
58
(
4
), pp.
673
686
.10.1080/00221686.2019.1661292
43.
Grass
,
A. J.
,
1971
, “
Structural Features of Turbulent Flow Over Smooth and Rough Boundaries
,”
J. Fluid Mech.
,
50
(
2
), pp.
233
255
.10.1017/S0022112071002556
44.
Lu
,
S. S.
, and
Willmarth
,
W. W.
,
1973
, “
Measurements of the Structure of the Reynolds Stress in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
60
(
03
), pp.
481
511
.10.1017/S0022112073000315
45.
Shih
,
W.
,
Diplas
,
P.
,
Celik
,
A. O.
, and
Dancey
,
C.
,
2017
, “
Accounting for the Role of Turbulent Flow on Particle Dislodgement Via a Coupled Quadrant Analysis of Velocity and Pressure Sequences
,”
Adv. Water Resources
,
101
, pp.
37
48
.10.1016/j.advwatres.2017.01.005
46.
Mazumder
,
B. S.
,
Pal
,
D. K.
,
Ghoshal
,
K.
, and
Ojha
,
S. P.
,
2009
, “
Turbulence Statistics of Flow Over Isolated Scalene and Isosceles Triangular-Shaped Bedforms
,”
J. Hydraul. Res.
,
47
(
5
), pp.
626
637
.10.3826/jhr.2009.3397
You do not currently have access to this content.