Abstract

The influence of wavy wall amplitude on the turbulent wall jet flow parameters has been investigated experimentally. For the present study, a sinusoidal wavy wall (y=A*sin(ωx)) has been used where “A=Amp/a” is the amplitude, which is normalized by the nozzle height “a.” The amplitude of the wavy wall is varied as 0.2, 0.4, and 0.6, and the results are compared with the results of plane wall jet. The constant temperature anemometer (CTA) has been used for the measurement of flow by using a transverse mechanism. The results for the mean velocity profile, turbulent intensity, and power spectral density are plotted at the crest and trough separately for more clear discussions. From the velocity profile, it is noticed that the formation of self-similar profile is delayed as the amplitude increases from 0.2 to 0.6, which means flow takes longer time to develop. There is an increase in the local maximum streamwise velocity Umax at crests for increasing amplitude. At the first crest, the rise in Umax is maximum, i.e., Umax is increased by 26%, 37%, and 60% for the amplitudes 0.2, 0.4, and 0.6, respectively, with respect to the plane wall case. In the near flow field, the turbulent intensity also becomes larger for the higher amplitude, which shows higher intermixing of fluid within the jet. This paper also produces the benchmark results which can be used for the validation of the numerical model dealing with the turbulent wall jet flowing over a wavy surface.

References

1.
Daily
,
J.
, and
Harleman
,
D.
,
1996
,
Fluid Dynamics
,
Addison-Wesley
, Taiwan.
2.
Kumar
,
S.
, and
Kumar
,
A.
,
2022
, “
Experimental Study of the Sidewall Effect on Three-Dimensional Turbulent Wall Jet
,”
ASME J. Fluids Eng.
,
144
(
1
), p.
011202
.10.1115/1.4051578
3.
Eriksson
,
J. G.
,
Karlsson
,
R. I.
, and
Persson
,
J.
,
1998
, “
An Experimental Study of a Two-Dimensional Plane Turbulent Wall Jet
,”
Exp. Fluids
,
25
(
1
), pp.
50
60
.10.1007/s003480050207
4.
Zhang
,
H. W.
,
Tao
,
W. Q.
,
He
,
Y. L.
, and
Zhang
,
W.
,
2006
, “
Numerical Study of Liquid Film Cooling in a Rocket Combustion Chamber
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
349
358
.10.1016/j.ijheatmasstransfer.2005.06.017
5.
Yao
,
Y.
,
Zhan
,
J. Z.
, and
Wang
,
L. P.
,
2013
, “
Film Cooling on a Gas Turbine Blade Suction Side With Converging Slot-Hole
,”
Int. J. Therm. Sci.
,
65
, pp.
267
279
.10.1016/j.ijthermalsci.2012.10.004
6.
AbdulNour
,
R.
,
Willenborg
,
K.
,
Grath
,
J. M.
,
Foss
,
J.
, and
AbdulNour
,
B.
,
2000
, “
Measurements of the Convection Heat Transfer Coeficient for a Planar Wall Jet: Uniform Temperature and Uniform Heat Flux Boundary Conditions
,”
Exp. Therm. Fluid Sci.
,
22
(
3–4
), pp.
123
131
.10.1016/S0894-1777(00)00018-2
7.
Jia
,
Y.
,
Long
,
P.
,
Xueqin
,
B.
,
Xiaobin
,
S.
,
Guiping
,
L.
, and
Lizhan
,
B.
,
2018
, “
Experimental Investigation and Correlation Development of Jet Impingement Heat Transfer With Two Rows of Aligned Jet Holes on an Internal Surface of a Wing Leading Edge
,”
Chin. J. Aeronaut.
,
31
, pp.
1962
1972
.
8.
Godi
,
S. C.
,
Pattamatta
,
A.
, and
Balaji
,
C.
,
2019
, “
Effect of the Inlet Geometry on the Flow and Heat Transfer Characteristics of Three-Dimensional Wall Jets
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
11
), p.
112201
.10.1115/1.4044509
9.
Sexton
,
A.
,
Punch
,
J.
,
Stafford
,
J.
, and
Jeffers
,
N.
,
2018
, “
Passive Control and Enhancement of Low Reynolds Number Slot Jets Through the Use of Tabs and Chevrons
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
3
), p.
032201
.10.1115/1.4037786
10.
Le
,
M. D.
,
Hsu
,
C. M.
,
Kholili
,
N.
, and
Lu
,
S. H.
,
2018
, “
Effects of Axial Jet-to-Wall Distance on Flow Behavior and Heat Transfer of a Wall Jet at Low Reynolds Number
,”
International Conference on Advanced Manufacturing
(
ICAM
), IEEE, Yunlin, Taiwan, Nov. 16–18, pp.
73
76
.10.1109/AMCON.2018.8614933
11.
Hnaien
,
N.
,
Marzouk
,
S.
,
Aissia
,
H. B.
, and
Jay
,
J.
,
2017
, “
Wall Inclination Effect in Heat Transfer Characteristics of a Combined Wall and Offset Jet Flow
,”
Int. J. Heat Fluid Flow
,
64
(
64
), pp.
66
78
.10.1016/j.ijheatfluidflow.2017.01.010
12.
Kumar
,
S.
, and
Kumar
,
A.
,
2021
, “
Effect of Initial Conditions on Mean Flow Characteristics of a Three Dimensional Turbulent Wall Jet
,”
J. Mech. Eng. Sci.
,
235
(
22
), pp.
6177
6190
.10.1177/09544062211014905
13.
Kaffel
,
A.
,
Moureh
,
J.
,
Harion
,
J.
, and
Russeil
,
S.
,
2015
, “
Experimental Investigation of a Plane Wall Jet Subjected to an External Lateral Flow
,”
Exp. Fluids
,
56
(
5
), pp.
1
19
.10.1007/s00348-015-1969-8
14.
Sharma
,
S.
,
Jesudhas
,
V.
,
Balachandar
,
R.
, and
Barron
,
R.
,
2019
, “
Turbulence Structure of a Counter-Flowing Wall Jet
,”
Phys. Fluids
,
31
(
2
), p.
025110
.10.1063/1.5082550
15.
Naqavi
,
I. Z.
,
Tucker
,
P. G.
, and
Liu
,
Y.
,
2014
, “
Large-Eddy Simulation of the Interaction of Wall Jets With External Stream
,”
Int. J. Heat Fluid Flow
,
50
, pp.
431
444
.10.1016/j.ijheatfluidflow.2014.10.014
16.
George
,
W. K.
,
Abrahamsson
,
H.
,
Eriksson
,
J.
,
Karlsson
,
R. I.
,
Lofdahl
,
L.
, and
Wosnik
,
M.
,
2000
, “
A Similarity Theory for the Turbulent Plane Wall Jet Without External Stream
,”
J. Fluid Mech.
,
425
, pp.
367
411
.10.1017/S002211200000224X
17.
Ayech
,
S. B. H.
,
Habli
,
S.
,
Said
,
N. M.
,
Bournot
,
H.
, and
Palec
,
G. L.
,
2014
, “
Effect of the Coflow Stream on a Plane Wall Jet
,”
Heat Mass Transfer
,
50
(
12
), pp.
1685
1697
.10.1007/s00231-014-1372-7
18.
Singh
,
T. P.
,
Kumar
,
A.
, and
Satapathy
,
A. K.
,
2020
, “
Enhancement of Heat Transfer Using Turbulent Wall Jet
,”
Proc. Inst. Mech. Eng., Part E
,
234
(
1
), pp.
123
136
.10.1177/0954408919891391
19.
Shivankar
,
S.
,
Randive
,
P. R.
, and
Pati
,
S.
,
2020
, “
Effects of Undulated Wall on the Hydrodynamic and Thermal Transport Characteristics of Turbulent Jet
,”
Int. J. Therm. Sci.
,
152
, p.
106297
.10.1016/j.ijthermalsci.2020.106297
20.
Kumari
,
A.
, and
Kumar
,
A.
,
2021
, “
Heat Transfer and Fluid Flow Characteristics of a Turbulent Wall Jet With a Wavy Wall
,”
Int. J. Heat Fluid Flow
,
87
, p.
108749
.10.1016/j.ijheatfluidflow.2020.108749
21.
Dakos
,
T.
,
Verriopoulos
,
C. A.
, and
Gibson
,
M. M.
,
1984
, “
Turbulent Flow With Heat Transfer in Plane and Curved Wall Jets
,”
J. Fluid Mech.
,
145
(
-1
), pp.
339
360
.10.1017/S0022112084002950
22.
Tang
,
Z.
,
Bergstrom
,
D. J.
, and
Bugg
,
J. D.
,
2017
, “
A Plane Turbulent Wall Jet on a Fully Rough Surface
,”
Int. J. Heat Fluid Flow
,
66
, pp.
258
264
.10.1016/j.ijheatfluidflow.2017.04.014
23.
Banyassady
,
R.
, and
Piomelli
,
U.
,
2014
, “
Turbulent Plane Wall Jets Over Smooth and Rough Surfaces
,”
J. Turbul.
,
15
(
3
), pp.
186
207
.10.1080/14685248.2014.888492
24.
Rostamy
,
N.
,
Bergstrom
,
D. J.
,
Sumner
,
D.
, and
Bugg
,
J. D.
,
2011
, “
The Effect of Surface Roughness on the Turbulence Structure of a Plane Wall Jet
,”
Phys. Fluid
,
23
, p.
085103
.10.1063/1.3614478
25.
Forthmann
,
E.
,
1936
, “
Turbulent Jet Expansion
,” National Advisory Committee for Aeronautics, Technical Memorandum No. 789.
26.
Glauert
,
M. B.
,
1956
, “
The Wall Jet
,”
J. Fluid Mech.
,
1
(
06
), pp.
625
643
.10.1017/S002211205600041X
27.
Launder
,
B. E.
, and
Rodi
,
W.
,
1983
, “
The Turbulent Wall Jet Measurements and Modeling
,”
Fluid Mech.
,
15
(
1
), pp.
429
459
.10.1146/annurev.fl.15.010183.002241
28.
Ayech
,
S. B. H.
,
Said
,
N. M.
,
Bournot
,
P.
, and
Palec
,
G. L.
,
2017
, “
Investigation of a Turbulent Wall Jet in Forced Convection Issuing Into a Directed Coflow Stream
,”
J. Turbul.
,
18
(
6
), pp.
539
559
.10.1080/14685248.2017.1305497
29.
Sun
,
H.
, and
Ewing
,
D.
,
2002
, “
Effect of Initial and Boundary Conditions on Development of Three-Dimensional Wall Jets
,”
AIAA
Paper No. 2002-0733.10.2514/6.2002-733
30.
Kumar
,
S.
, and
Kumar
,
A.
,
2022
, “
Influence of Sidewalls on Three-Dimensional Turbulent Wall Jet: An Experimental and Numerical Approach
,”
Comput. Fluids
,
244
, p.
105543
.10.1016/j.compfluid.2022.105543
31.
Lai
,
J. C. S.
, and
Lu
,
D.
,
1996
, “
Effect of Wall Inclination on the Mean Flow and Turbulence Characteristics in a Two - Dimensional Wall Jet
,”
Int. J. Heat Fluid Flow
,
17
(
4
), pp.
377
385
.10.1016/0142-727X(95)00017-K
32.
Villafruela
,
J. M.
,
Castro
,
F.
, and
Parra
,
M. T.
,
2008
, “
Experimental Study of Parallel and Inclined Turbulent Wall Jets
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
132
139
.10.1016/j.expthermflusci.2008.07.008
33.
Song
,
H. B.
,
Yoon
,
S. H.
, and
Lee
,
D. H.
,
2000
, “
Flow and Heat Transfer Characteristics of a Two-Dimensional Oblique Wall Attaching Offset Jet
,”
Int. J. Heat Mass Transfer
,
43
(
13
), pp.
2395
2404
.10.1016/S0017-9310(99)00312-9
34.
Pramanik
,
S.
, and
Das
,
M. K.
,
2014
, “
Computational Study of a Turbulent Wall Jet Flow on an Oblique Surface
,”
Int. J. Numer. Methods Heat Fluid Flow
,
24
(
2
), pp.
290
324
.10.1108/HFF-01-2012-0005
35.
Catalano
,
G. D.
,
Morton
,
J. B.
, and
Humphris
,
R. R.
,
1977
, “
An Experimental Investigation of a Three-Dimensional Wall Jet
,”
AIAA J.
,
15
(
8
), pp.
1146
1151
.10.2514/3.7403
36.
Rostamy
,
N.
,
Bergstrom
,
D. J.
,
Sumner
,
D.
, and
Bugg
,
J. D.
,
2011
, “
An Experimental Study of a Turbulent Wall Jet on Smooth and Transitionally Rough Surfaces
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111207
.10.1115/1.4005218
37.
Singh
,
T. P.
,
Kumar
,
A.
, and
Satapathy
,
A. K.
,
2020
, “
Numerical Study to Enhance the Heat Transfer Using Sinusoidal Wavy Surface for Turbulent Wall Jet
,”
Numer. Heat Transfer, Part A
,
77
(
2
), pp.
179
198
.10.1080/10407782.2019.1688026
38.
Singh
,
T. P.
,
Kumar
,
A.
, and
Satapathy
,
A. K.
,
2021
, “
Role of a Sinusoidal Wavy Surface in Enhancement of Heat Transfer Using Turbulent Dual Jet
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
3
), p.
032002
.10.1115/1.4049274
39.
Singh
,
T. P.
,
Kumar
,
A.
, and
Satapathy
,
A. K.
,
2022
, “
Enhancing the Heat Transfer Rate Through Surface Manipulation
,”
J. Thermophys. Heat Transfer
,
36
(
1
), pp.
178
195
.10.2514/1.T6070
40.
Aberneth
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
Asme Measurement Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.10.1115/1.3242450
41.
Deo
,
R. C.
,
Nathan
,
G. J.
, and
Mi
,
J.
,
2007
, “
Comparison of Turbulent Jets Issuing From Rectangular Nozzles With and Without Sidewalls
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
596
606
.10.1016/j.expthermflusci.2007.06.009
42.
Hair
,
J.
,
Black
,
W. C.
,
Babin
,
B. J.
, and
Anderson
,
R. E.
,
2010
,
Multivariate Data Analysis
, 7th ed.,
Pearson Educational International
,
Upper Saddle River, NJ
.
43.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.10.1016/0894-1777(88)90043-X
44.
Wygnanski
,
I.
,
Katz
,
Y.
, and
Horev
,
E.
,
1992
, “
On the Applicability of Various Scaling Laws to the Turbulent Wall Jet
,”
J. Fluid Mech.
,
234
(
-1
), pp.
669
690
.10.1017/S002211209200096X
45.
Naqavi
,
I. Z.
,
Tyacke
,
J. C.
, and
Tucker
,
P. G.
,
2018
, “
Direct Numerical Simulation of a Wall Jet: Flow Physics
,”
J. Fluid Mech.
,
852
, pp.
507
542
.10.1017/jfm.2018.503
46.
Barenblatt
,
G. I.
,
Chorin
,
A. J.
, and
Prostokishin
,
V. M.
,
2005
, “
The Turbulent Wall Jet: A Triple-Layered Structure and Incomplete Similarity
,”
J. Appl. Math.
,
102
(
25
), pp.
8850
8853
.10.1073/pnas.0503186102
47.
George
,
W. K.
,
1989
, “
The Self-Preservation of Turbulent Flows and Its Relation to Initial Conditions and Coherent Structures
,”
Adv. Turbul.
, p.
3973
.
48.
George
,
W. K.
,
2012
, “
Asymptotic Effect of Initial and Upstream Conditions on Turbulence
,”
ASME J. Fluids Eng.
,
134
(
6
), p.
061203
.10.1115/1.4006561
49.
Bisoi
,
M.
,
Das
,
M. K.
,
Roy
,
S.
, and
Patel
,
D. K.
,
2017
, “
Large Eddy Simulation of Three-Dimensional Plane Turbulent Free Jet Flow
,”
Eur. J. Mech. B/Fluids
,
65
(
65
), pp.
423
439
.10.1016/j.euromechflu.2017.02.003
You do not currently have access to this content.