Abstract

High-order large eddy simulations are performed to study the performance and flow fields of a ducted wind turbine (DWT) operating at different tip speed ratios. To evaluate the effects of the duct, simulations with the same tip speed ratios are also performed on the corresponding open-rotor turbine. It is found that the ducted turbine consistently obtains higher power outputs than the open-rotor counterpart, and the duct itself enhances flow turbulence and blade trailing-edge vortices but weakens tip and hub vortices. Flow bifurcation is observed at the largest tip speed ratio and is identified to be caused by blade blockage effects. Comparative simulations are also performed on both turbines under different yaw angles. It is noticed that the ducted configuration is insensitive to small yaw angles and maintains higher power outputs than the open-rotor configuration at all yaw angles. Moreover, it is observed that the wakes of both configurations recover more quickly as the yaw angle increases.

References

1.
Shepherd
,
W.
, and
Zhang
,
L.
,
2017
,
Electricity Generation Using Wind Power
,
World Scientific
, Singapore.
2.
Hau
,
E.
,
2013
,
Wind Turbines: Fundamentals, Technologies, Application, Economics
,
Springer Science & Business Media
,
Berlin, Germany
.
3.
Burton
,
T.
,
Jenkins
,
N.
,
Sharpe
,
D.
, and
Bossanyi
,
E.
,
2011
,
Wind Energy Handbook
,
Wiley
, West Sussex, UK.
4.
Ochieng
,
F. X.
,
Hancock
,
C. M.
,
Roberts
,
G. W.
, and
Le Kernec
,
J.
,
2018
, “
A Review of Ground-Based Radar as a Noncontact Sensor for Structural Health Monitoring of In-Field Wind Turbines Blades
,”
Wind Energy
,
21
(
12
), pp.
1435
1449
.10.1002/we.2252
5.
Dighe
,
V.
,
Avallone
,
F.
, and
Bussel
,
G.
,
2020
, “
Effects of Yawed Inflow on the Aerodynamic and Aeroacoustic Performance of Ducted Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
201
, p.
104174
.10.1016/j.jweia.2020.104174
6.
Bontempo
,
R.
, and
Manna
,
M.
,
2020
, “
On the Potential of the Ideal Diffuser Augmented Wind Turbine: An Investigation by Means of a Momentum Theory Approach and of a Free-Wake Ring-Vortex Actuator Disk Model
,”
Energy Convers. Manage.
,
213
, p.
112794
.10.1016/j.enconman.2020.112794
7.
Lilley
,
G. M.
, and
Rainbird
,
W. J.
,
1956
,
A Preliminary Report on the Design and Performance of Ducted Windmills
,
College of Aeronautics, Cranfield University
,
Bedford, UK
.
8.
Foreman
,
K. M.
,
Gilbert
,
B.
, and
Oman
,
R. A.
,
1978
, “
Diffuser Augmentation of Wind Turbines
,”
Sol. Energy
,
20
(
4
), pp.
305
311
.10.1016/0038-092X(78)90122-6
9.
Gilbert
,
B. L.
, and
Foreman
,
K. M.
,
1979
, “
Experimental Demonstration of the Diffuser-Augmented Wind Turbine Concept
,”
J. Energy
,
3
(
4
), pp.
235
240
.10.2514/3.48002
10.
Igra
,
O.
,
1981
, “
Research and Development for Shrouded Wind Turbines
,”
Energy Convers. Manage.
,
21
(
1
), pp.
13
48
.10.1016/0196-8904(81)90005-4
11.
Fletcher
,
C. A.
,
1981
, “
Computational Analysis of Diffuser-Augmented Wind Turbines
,”
Energy Convers. Manage.
,
21
(
3
), pp.
175
183
.10.1016/0196-8904(81)90012-1
12.
Vaz
,
J. R.
, and
Wood
,
D. H.
,
2018
, “
Effect of the Diffuser Efficiency on Wind Turbine Performance
,”
Renewable Energy
,
126
, pp.
969
977
.10.1016/j.renene.2018.04.013
13.
Koras
,
A. D.
, and
Georgalas
,
C. G.
,
1988
, “
Calculation of the Influence of Annular Augmentors on the Performance of a Wind Rotor
,”
Wind Eng.
,
12
(
4
), pp.
257
267
.http://www.jstor.org/stable/43750035
14.
Politis
,
G. K.
, and
Koras
,
A. D.
,
1995
, “
A Performance Prediction Method for Ducted Medium Loaded Horizontal Axis Windturbines
,”
Wind Eng.
,
19
(
5
), pp.
273
288
.http://www.jstor.org/stable/43749587
15.
Phillips
,
D. G.
,
Richards
,
P. J.
, and
Flay
,
R.
,
2002
, “
CFD Modelling and the Development of the Diffuser Augmented Wind Turbine
,”
Wind Struct.
,
5
(
2_3_4
), pp.
267
276
.10.12989/was.2002.5.2_3_4.267
16.
Hansen
,
M. O. L.
,
Sørensen
,
N. N.
, and
Flay
,
R. G. J.
,
2000
, “
Effect of Placing a Diffuser Around a Wind Turbine
,”
Wind Energy
,
3
(
4
), pp.
207
213
.10.1002/we.37
17.
Abe
,
K.
, and
Ohya
,
Y.
,
2004
, “
An Investigation of Flow Fields Around Flanged Diffusers Using CFD
,”
J. Wind Eng. Ind. Aerodyn.
,
92
(
3–4
), pp.
315
330
.10.1016/j.jweia.2003.12.003
18.
Venters
,
R.
,
Helenbrook
,
B.
, and
Visser
,
K.
,
2018
, “
Ducted Wind Turbine Optimization
,”
ASME J. Sol. Energy Eng.
,
140
(
1
), p.
011005
.10.1115/1.4037741
19.
Sadeghi
,
N. B.
,
Helenbrook
,
B.
, and
Visser
,
K.
,
2018
, “
Ducted Wind Turbine Optimization and Sensitivity to Rotor Position
,”
Wind Energy Sci.
,
3
(
1
), pp.
221
229
.10.5194/wes-3-221-2018
20.
Hill
,
W. R. T.
,
1973
, “
Triangular Mesh Methods for the Neutron Transport Equation
,”
Los Alamos Scientific Laboratory
,
Los Alamos, NM
, Technical Report No. LA-UR-73-479; CONF-730414-2.
21.
Cockburn
,
B.
,
Karniadakis
,
G.
, and
Shu
,
C. W.
,
2012
,
Discontinuous Galerkin Methods: Theory, Computation and Applications
, Vol.
11
,
Springer Science & Business Media
,
Berlin, Germany
.
22.
Patera
,
A.
,
1984
, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
,
54
(
3
), pp.
468
488
.10.1016/0021-9991(84)90128-1
23.
Karniadakis
,
G.
, and
Sherwin
,
S.
,
2013
,
Spectral/hp Element Methods for Computational Fluid Dynamics
,
Oxford University Press
, Oxford, UK.
24.
Kopriva
,
D.
, and
Kolias
,
J.
,
1996
, “
A Conservative Staggered-Grid Chebyshev Multidomain Method for Compressible Flows
,”
J. Comput. Phys.
,
125
(
1
), pp.
244
261
.10.1006/jcph.1996.0091
25.
Kopriva
,
D.
,
1996
, “
A Conservative Staggered-Grid Chebyshev Multidomain Method for Compressible Flows. II. A Semi-Structured Method
,”
J. Comput. Phys.
,
128
(
2
), pp.
475
488
.10.1006/jcph.1996.0225
26.
Kopriva
,
D.
,
1998
, “
A Staggered-Grid Multidomain Spectral Method for the Compressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
143
(
1
), pp.
125
158
.10.1006/jcph.1998.5956
27.
Liu
,
Y.
,
Vinokur
,
M.
, and
Wang
,
Z.
,
2006
, “
Spectral Difference Method for Unstructured Grids I: Basic Formulation
,”
J. Comput. Phys.
,
216
(
2
), pp.
780
801
.10.1016/j.jcp.2006.01.024
28.
Huynh
,
H. T.
,
2007
, “
A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods
,”
AIAA
Paper No. 2007-4079.10.2514/6.2007-4079
29.
Huynh
,
H. T.
,
2009
, “
A Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin for Diffusion
,”
AIAA
Paper No. 2009-403.10.2514/6.2009-403
30.
Wang
,
Z. J.
, and
Gao
,
H.
,
2009
, “
A Unifying Lifting Collocation Penalty Formulation Including the Discontinuous Galerkin, Spectral Volume/Difference Methods for Conservation Laws on Mixed Grids
,”
J. Comput. Phys.
,
228
(
21
), pp.
8161
8186
.10.1016/j.jcp.2009.07.036
31.
Zhang
,
B.
, and
Liang
,
C.
,
2015
, “
A Simple, Efficient, High-Order Accurate Sliding-Mesh Interface Approach to FR/CPR Method on Coupled Rotating and Stationary Domains
,”
AIAA
Paper No. 2015-1742.10.2514/6.2015-1742
32.
Zhang
,
B.
, and
Liang
,
C.
,
2015
, “
A Simple, Efficient, and High-Order Accurate Curved Sliding-Mesh Interface Approach to Spectral Difference Method on Coupled Rotating and Stationary Domains
,”
J. Comput. Phys.
,
295
, pp.
147
160
.10.1016/j.jcp.2015.04.006
33.
Zhang
,
B.
,
Liang
,
C.
,
Yang
,
J.
, and
Rong
,
Y.
,
2016
, “
A 2D Parallel High-Order Sliding and Deforming Spectral Difference Method
,”
Comput. Fluids
,
139
, pp.
184
196
.10.1016/j.compfluid.2016.06.019
34.
Zhang
,
B.
, and
Liang
,
C.
,
2016
, “
A High-Order Sliding-Mesh Spectral Difference Solver for Simulating Unsteady Flows Around Rotating Objects
,”
31st Symposium on Naval Hydrodynamics
,
Monterey, CA
, Sept. 11–16, pp.
1
15
.https://www.binzhang.org/publications/2016-SNH.pdf
35.
Zhang
,
B.
,
Qiu
,
Z.
, and
Liang
,
C.
,
2018
, “
A Flux Reconstruction Method With Nonuniform Sliding-Mesh Interfaces for Simulating Rotating Flows
,”
AIAA
Paper No. 2018-1094.10.2514/6.2018-1094
36.
Zhang
,
B.
, and
Liang
,
C.
,
2021
, “
A Conservative High-Order Method Utilizing Dynamic Transfinite Mortar Elements for Flow Simulation on Curved Sliding Meshes
,”
J. Comput. Phys.
,
443
, p.
110522
.10.1016/j.jcp.2021.110522
37.
Zhang
,
B.
, and
Liang
,
C.
,
2019
, “
High-Order Numerical Simulation of Flows Over Rotating Cylinders of Various Cross-Sectional Shapes
,”
AIAA
Paper No. 2019-3430.10.2514/6.2019-3430
38.
Zhang
,
B.
, and
Liang
,
C.
,
2019
, “
High-Order Numerical Simulation of Flapping Wing for Energy Harvesting
,”
AIAA
Paper No. 2019-3338.10.2514/6.2019-3338
39.
Zhang
,
B.
,
Ding
,
C.
, and
Liang
,
C.
,
2021
, “
High-Order Implicit Large-Eddy Simulation of Flow Over a Marine Propeller
,”
Comput. Fluids
,
224
, p.
104967
.10.1016/j.compfluid.2021.104967
40.
Ding
,
C.
,
Zhang
,
B.
,
Liang
,
C.
,
Visser
,
K. D.
, and
Yao
,
G.
,
2022
, “
High-Order Large-Eddy Simulations of a Ducted Wind Turbine
,”
AIAA
Paper No. 2022-1147.10.2514/6.2022-1147
41.
Thomas
,
P. D.
, and
Lombard
,
C. K.
,
1979
, “
Geometric Conservation Law and Its Application to Flow Computations on Moving Grids
,”
AIAA J.
,
17
(
10
), pp.
1030
1037
.10.2514/3.61273
42.
Ergatoudis
,
I.
,
Irons
,
B. M.
, and
Zienkiewicz
,
O. C.
,
1968
, “
Curved, Isoparametric, ‘Quadrilateral’ Elements for Finite Element Analysis
,”
Int. J. Solids Struct.
,
4
(
1
), pp.
31
42
.10.1016/0020-7683(68)90031-0
43.
Rusanov
,
V. V.
,
1961
, “
Calculation of Interaction of Non-Steady Shock Waves With Obstacles
,”
J. Comput. Math. Phys. USSR
,
1
, pp.
267
279
.10.1016/0041-5553(62)90062-9
44.
Spiteri
,
R. J.
, and
Ruuth
,
S. J.
,
2002
, “
A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods
,”
SIAM J. Numer. Anal.
,
40
(
2
), pp.
469
491
.10.1137/S0036142901389025
45.
Ruuth
,
S.
,
2005
, “
Global Optimization of Explicit Strong-Stability-Preserving Runge–Kutta Methods
,”
Math. Computation
,
75
(
253
), pp.
183
207
.10.1090/S0025-5718-05-01772-2
46.
Zhang
,
B.
,
2016
, “
A High-Order Computational Framework for Simulating Flows Around Rotating and Moving Objects
,” Ph.D. thesis,
The George Washington University
,
Washington, DC
.
47.
Kanya
,
B.
, and
Visser
,
K.
,
2018
, “
Experimental Validation of a Ducted Wind Turbine Design Strategy
,”
Wind Energy Sci.
,
3
(
2
), pp.
919
928
.10.5194/wes-3-919-2018
You do not currently have access to this content.