Abstract

An axial-flow pump (AFP) a key hydraulic component in the circulating water system of large ships. When the speed of a large ship meets certain requirements, the AFP operates in the unpowered driven condition and has the characteristics of low speed, positive rotation and driven rotation, thereby achieving energy recovery efficiency without investing in the driving device. The unsteady internal flow characteristics of the AFP under the unpowered driven condition differ from those of conventional conditions. The blade tip clearance (TC) is an essential basis for the comprehensive technical indicators of the lift pump and the safe and stable operation of the circulating water system. In this study, the performance of the AFP with different TCs under the unpowered driven condition is investigated based on experimental tests and numerical simulations. Based on the entropy production theory, the energy loss characteristics of the AFP with different TCs are studied, and it is concluded that increasing the TC increases the strength of tip leakage flow. Particularly at large TCs, the energy loss of the pump increases significantly, causing flow separation on the blade surface and the formation of large-area vortex structures on the blade. In addition, under the large spacing TC, the instantaneous entropy production of the pump is unstable, and the entropy production frequency and amplitude are much larger than those of the conventional TC.

References

1.
Li
,
C.
,
Ke
,
T.
,
Zhang
,
J.
,
Zhang
,
H.
, and
Huang
,
W.
,
2013
, “
Experimental and Numerical Investigation of the Unsteady Tip Leakage Flow in Axial Compressor Cascade[J]
,”
J. Therm. Sci.
,
22
(
2
), pp.
103
110
.10.1007/s11630-013-0599-9
2.
Storer
,
J. A.
, and
Cumpsty
,
N. A.
,
1991
, “
Tip Leakage Flow in Axial Compressors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
252
259
.10.1115/1.2929095
3.
Xu
,
B.
,
Shen
,
X.
,
Zhang
,
D.
, and
Zhang
,
W.
,
2019
, “
Experimental and Numerical Investigation on the Tip Leakage Vortex Cavitation in an Axial Flow Pump With Different Tip Clearances[J]
,”
Processes
,
7
(
12
), p.
935
.10.3390/pr7120935
4.
Liu
,
Y.
,
Han
,
Y.
,
Tan
,
L.
, and
Wang
,
Y.
,
2020
, “
Blade Rotation Angle on Energy Performance and Tip Leakage Vortex in a Mixed Flow Pump as Turbine at Pump Mode
,”
Energy
,
206
, p.
118084
.10.1016/j.energy.2020.118084
5.
Liu
,
Y.
, and
Tan
,
L.
,
2020
, “
Theoretical Prediction Model of Tip Leakage Vortex in a Mixed Flow Pump With Tip Clearance
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021203
.10.1115/1.4044982
6.
Zhang
,
D.
,
Shi
,
W.
,
(Bart) van Esch
,
B. P. M.
,
Shi
,
L.
, and
Dubuisson
,
M.
,
2015
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Trajectory and Dynamics in an Axial Flow Pump
,”
Comput. Fluids
,
112
, pp.
61
71
.10.1016/j.compfluid.2015.01.010
7.
Murayama
,
M.
,
Yoshida
,
Y.
, and
Tsujimoto
,
Y.
,
2006
, “
Unsteady Tip Leakage Vortex Cavitation Originating From the Tip Clearance of an Oscillating Hydrofoil
,”
ASME J. Fluids Eng.
,
128
(
3
), pp.
421
429
.10.1115/1.2173290
8.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2001
, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
,
123
(
3
), pp.
453
460
.10.1115/1.1370160
9.
Khalid
,
S. A.
,
Khalsa
,
A. S.
,
Waitz
,
I. A.
,
Tan
,
C. S.
,
Greitzer
,
E. M.
,
Cumpsty
,
N. A.
,
Adamczyk
,
J. J.
, and
Marble
,
F. E.
,
1999
, “
End-Wall Blockage in Axial Compressors
,”
ASME J. Turbomach.
,
121
(
3
), pp.
499
509
.10.1115/1.2841344
10.
Hsiao
,
C. T.
, and
Chahine
,
G. L.
,
2005
, “
Scaling of Tip Vortex Cavitation Inception Noise With a Bubble Dynamics Model Accounting for Nuclei Size Distribution
,”
ASME J. Fluids Eng.
,
127
(
1
), pp.
55
65
.10.1115/1.1852476
11.
Yang
,
S. S.
,
Derakhshan
,
S.
, and
Kong
,
F. Y.
,
2012
, “
Theoretical, Numerical and Experimental Prediction of Pump as Turbine Performance[J]
,”
Renewable Energy
,
48
, pp.
507
513
.10.1016/j.renene.2012.06.002
12.
Yang
,
S.-S.
,
Kong
,
F.-Y.
,
Jiang
,
W.-M.
, and
Qu
,
X.-Y.
,
2012
, “
Effects of Impeller Trimming Influencing Pump as Turbine
,”
Comput. Fluids
,
67
, pp.
72
78
.10.1016/j.compfluid.2012.07.009
13.
Yang
,
S. S.
,
Liu
,
H. L.
,
Kong
,
F. Y.
,
Xia
,
B.
, and
Tan
,
L. W.
,
2014
, “
Effects of the Radial Gap Between Impeller Tips and Volute Tongue Influencing the Performance and Pressure Pulsations of Pump as Turbine
,”
ASME J. Fluids Eng.
,
136
(
5
), p.
054501
.10.1115/1.4026544
14.
Singh
,
P.
, and
Nestmann
,
F.
,
2010
, “
An Optimization Routine on a Prediction and Selection Model for the Turbine Operation of Centrifugal Pumps
,”
Exp. Therm. Fluid. Sci.
,
34
(
2
), pp.
152
164
.10.1016/j.expthermflusci.2009.10.004
15.
Singh
,
P.
, and
Nestmann
,
F.
,
2011
, “
Internal Hydraulic Analysis of Impeller Rounding in Centrifugal Pumps as Turbines
,”
Exp. Therm. Fluid Sci.
,
35
(
1
), pp.
121
134
.10.1016/j.expthermflusci.2010.08.013
16.
Joshi
,
S.
,
Gordon
,
A.
,
Holloway
,
L.
, and
Chang
,
L.
,
2005
, “
Selecting a High Specific Speed Pump for Low Head Hydro-Electric Power Generation
,”
Proceedings of the Canadian Conference on Electrical and Computer Engineering
,
Saskatoon, SK, Canada
, May 1–4, pp.
603
606
.10.1109/CCECE.2005.1557003
17.
Qian
,
Z.
,
Wang
,
F.
,
Guo
,
Z.
, and
Lu
,
J.
,
2016
, “
Performance Evaluation of an Axial-Flow Pump With Adjustable Guide Vanes in Turbine Mode
,”
Renewable Energy
,
99
, pp.
1146
1152
.10.1016/j.renene.2016.08.020
18.
Li
,
D.
,
Wang
,
H.
,
Qin
,
Y.
,
Han
,
L.
,
Wei
,
X.
, and
Qin
,
D.
,
2017
, “
Entropy Production Analysis of Hysteresis Characteristic of a Pump-Turbine Model[J]
,”
Energy Convers. Manag.
,
149
, pp.
175
191
.10.1016/j.enconman.2017.07.024
19.
Kan
,
K.
,
Zhang
,
Q.
,
Xu
,
Z.
,
Zheng
,
Y.
,
Gao
,
Q.
, and
Shen
,
L.
,
2022
, “
Energy Loss Mechanism Due to Tip Leakage Flow of Axial Flow Pump as Turbine Under Various Operating Conditions
,”
Energy
,
255
, p.
124532
.10.1016/j.energy.2022.124532
20.
Li
,
D.
,
Gong
,
R.
,
Wang
,
H.
,
Xiang
,
G.
,
Wei
,
X.
, and
Qin
,
D.
,
2016
, “
Entropy Production Analysis for Hump Characteristics of a Pump Turbine Model[J]
,”
Chin. J. Mech. Eng.
,
29
(
4
), pp.
803
812
.10.3901/CJME.2016.0414.052
21.
Li
,
W.
,
Qiao
,
W. Y.
,
Xu
,
K. F.
, and
Luo
,
H. L.
,
2008
, “
Numerical Simulation of Tip Clearance Flow Passive Control in Axial Turbine
,”
J. Therm. Sci.
,
17
(
2
), pp.
147
155
.10.1007/s11630-008-0147-1
22.
Han
,
W.
,
Liu
,
Y.
,
Gong
,
C.
,
Su
,
Y.
,
Guo
,
P.
,
Su
,
M.
,
Shi
,
F.
, and
Wei
,
Z.
,
2020
, “
Effect of Tip Clearance on Performance of Contra-Rotating Axial Flow Water-Jet Propulsion Pump
,”
Mod. Phys. Lett. B
,
34
(
10
), p.
2050094
.10.1142/S0217984920500943
23.
Kan
,
K.
,
Xu
,
Z.
,
Chen
,
H.
,
Xu
,
H.
,
Zheng
,
Y.
,
Zhou
,
D.
,
Muhirwa
,
A.
, and
Maxime
,
B.
,
2022
, “
Energy Loss Mechanisms of Transition From Pump Mode to Turbine Mode of an Axial-Flow Pump Under Bidirectional Conditions
,”
Energy
,
257
, p.
124630
.10.1016/j.energy.2022.124630
24.
Li
,
Y.
,
Zheng
,
Y.
,
Meng
,
F.
, and
Osman
,
M. K.
,
2020
, “
The Effect of Root Clearance on Mechanical Energy Dissipation for Axial Flow Pump Device Based on Entropy Production
,”
Processes
,
8
(
11
), p.
1506
.10.3390/pr8111506
25.
Wei
,
L.
,
Ramesh K
,
A.
,
Ling
,
Z.
,
Enda
,
L.
, and
Leilei
,
J.
,
2019
, “
Effect of Tip Clearance on Rotating Stall in a Mixed-Flow Pump
,”
ASME
Paper No. GT2019-90134.10.1115/GT2019-90134
26.
Bejan
,
A.
,
1994
,
Entropy Production Through Heat and Fluid Flow
,
Wiley
,
New York
.
27.
Kock
,
F.
, and
Herwig
,
H.
,
2004
, “
Local Entropy Production in Turbulent Shear Flows: A high-Reynolds Number Model With Wall Functions
,”
Int. J. Heat Mass Tranfer
,
47
(
10–11
), pp.
2205
2215
.10.1016/j.ijheatmasstransfer.2003.11.025
28.
Wu
,
J. Z.
,
Ma
,
H. Y.
, and
Zhou
,
M. D.
,
2007
,
Vorticity and Vortex Dynamics
,
Springer
,
New York
.
29.
Li
,
Y.
,
Lin
,
Q.
,
Meng
,
F.
,
Zheng
,
Y.
, and
Xu
,
X.
,
2022
, “
Research on the Influence of Tip Clearance of Axial-Flow Pump on Energy Characteristics Under Pump and Turbine Conditions
,”
Machines
,
10
(
1
), p.
56
.10.3390/machines10010056
30.
Ji
,
L.
,
Li
,
W.
,
Shi
,
W.
,
Chang
,
H.
, and
Yang
,
Z.
,
2020
, “
Energy Characteristics of Mixed-Flow Pump Under Different Tip Clearances Based on Entropy Production Analysis
,”
Energy
,
199
, p.
117447
.10.1016/j.energy.2020.117447
31.
Feng
,
J.
,
Luo
,
X.
,
Guo
,
P.
, and
Wu
,
G.
,
2016
, “
Influence of Tip Clearance on Pressure Fluctuations in an Axial Flowpump
,”
J. Mech. Sci. Technol.
,
30
(
4
), pp.
1603
1610
.10.1007/s12206-016-0315-2
32.
Lee
,
S.-H.
,
Wang
,
Y.-Q.
, and
Song
,
J.-I.
,
2010
, “
Fourier and Wavelet Transformations Application to Fault Detection of Induction Motor With Stator Current
,”
J. Central South Univ. Technol.
,
17
(
1
), pp.
93
101
.10.1007/s11771-010-0016-4
You do not currently have access to this content.