Abstract

A comprehensive study of the rheological characterization of the aqueous solutions of polyethylene oxide (PEO) with molecular mass of 4 × 106, 5 × 106, and 8 × 106 g/mol, respectively, named (4 miDA), (5 miDA), and (8 miDA) was conducted. A large batch of samples of 4 miDA PEO with concentrations varying from 0.1% to 3%, representing the range of dilute solutions to very high viscous hydrated gels, were tested. Steady-state shear flow and oscillatory measurements are reported. Cross, Carreau, and Carreau–Yasuda models were used to describe the shear-thinning behavior within the shear rate range (0.001 ≤ γ˙ ≤ 3000 s−1). Experimental findings were validated with published results under the same operating conditions within specified shear rate ranges (0.1 ≤ γ˙ ≤ 100 s−1). We find that the behavior of PEO under shear is highly dependent on the rheometer, material, and operating procedures. Oscillatory measurements were carried out to determine the complex properties of the PEO solutions in the frequency ω and strain amplitude γ ranges of 0.01 ≤ ω ≤ 100 rad/s and 0.01 ≤ γ ≤ 1000%, respectively. Higher magnitudes of dynamic moduli (G/ and G//), zero (η0) and infinite (η) shear rate viscosities, resonant frequencies (ωres), linear viscoelastic regions (LVER), and higher relaxation time constants (λ) were observed with increasing concentration and molecular weight. The rheological response of the PEO polymeric solutions was further clarified via Lissajous curves. The aim of this work is to characterize the behavior of the 4 miDA PEO prior to its use in an experimental investigation of the secondary flows of viscoelastic fluids in noncircular channels.

References

1.
Siginer
,
D. A.
,
2011
, “
Isothermal Tube Flow of Non-Linear Viscoelastic Fluids. Part II: Transversal Field
,”
Int. J. Eng. Sci.
,
49
(
6
), pp.
443
465
.10.1016/j.ijengsci.2010.11.001
2.
Siginer
,
D. A.
,
2015
,
Developments in the Flow of Complex Fluids in Tubes
,
Springer
,
New York
.
3.
Li
,
Y. K.
,
Zheng
,
Z. Y.
,
Zhang
,
H. N.
,
Li
,
F. C.
,
Qian
,
S.
,
Joo
,
S. W.
, and
Kulagina
,
L. V.
,
2017
, “
Numerical Study on Secondary Flows of Viscoelastic Fluids in Straight Ducts: Origin Analysis and Parametric Effects
,”
Comput. Fluids
,
152
, pp.
57
73
.10.1016/j.compfluid.2017.04.016
4.
Xie
,
C.
, and
Hartnett
,
J. P.
,
1992
, “
Influence of Rheology on Laminar Heat Transfer to Viscoelastic Fluids in a Rectangular Channel
,”
Ind. Eng. Chem. Res.
,
31
(
3
), pp.
727
732
.10.1021/ie00003a012
5.
Upadhye
,
S. B.
, and
Rajabi-Siahboomi
,
A. R.
,
2013
, “
Properties and Applications of Polyethylene Oxide and Ethylcellulose for Tamper Resistance and Controlled Drug Delivery
,”
Melt Extrusion
,
Springer
,
New York
, pp.
145
158
.
6.
Braun
,
D. D.
, and
Rosen
,
M. R.
,
2013
,
Rheology Modifiers Handbook: Practical Use and Application
,
Elsevier
, Norwich, New York.
7.
Sajid
,
M.
,
Siddiqui
,
G. U.
,
Kim
,
S. W.
,
Na
,
K. H.
,
Choi
,
Y. S.
, and
Choi
,
K. H.
,
2017
, “
Thermally Modified Amorphous Polyethylene Oxide Thin Films as Highly Sensitive Linear Humidity Sensors
,”
Sens. Actuators, A
,
265
, pp.
102
110
.10.1016/j.sna.2017.08.040
8.
Siginer
,
D. A.
, and
Letelier
,
M. F.
,
2006
, “
Heat Transfer in Internal Flows of Non-Linear Fluids: A Review
,”
ASME
Paper No. IMECE2006-16077.10.1115/IMECE2006-16077
9.
Letelier
,
M. F.
,
Siginer
,
D. A.
,
Barrera
,
C.
,
González
,
A.
, and
Boutaous
,
M. H.
,
2020
, “
Forced Convection in Non-Circular Tubes With Non-Linear Viscoelastic Fluids Including Viscous Dissipation
,”
Int. J. Therm. Sci.
,
150
, p.
106122
.10.1016/j.ijthermalsci.2019.106122
10.
Siginer
,
D. A.
,
Letelier
,
M. F.
,
Jacobs
,
P.
,
Aguirre
,
A.
, and
Boutaous
,
M.
,
2020
, “
Forced Convection of Elastoviscoplastic Fluids in Non-Circular Tubes
,”
Chem. Eng. Sci.
,
213
, p.
115318
.10.1016/j.ces.2019.115318
11.
Siginer
,
D. A.
,
Letelier
,
M. F.
,
Barrera
,
C.
, and
González
,
A.
,
2019
, “
Transversal Field and Heat Transfer in the Flow of Non-Linear Viscoelastic Fluids in Tear-Drop Shaped Tubes Including Viscous Dissipation
,”
Int. J. Therm. Sci.
,
141
, pp.
150
159
.10.1016/j.ijthermalsci.2019.03.019
12.
Musil
,
J.
, and
Zatloukal
,
M.
,
2019
, “
Historical Review of Secondary Entry Flows in Polymer Melt Extrusion
,”
Polym. Rev.
,
59
(
2
), pp.
338
390
.10.1080/15583724.2018.1481428
13.
Zheng
,
X.
,
Boutaous
,
M.
,
Xin
,
S.
,
Siginer
,
D. A.
,
Hagani
,
F.
, and
Knikker
,
R.
,
2020
, “
A New Approach to Numerical Modelling of the Viscoelastic Rayleigh-Bénard Convection
,”
ASME
Paper No. IMECE2019-11675.10.1115/IMECE2019-11675
14.
Zheng
,
X.
,
Hagani
,
F.
,
Boutaous
,
M.
,
Knikker
,
R.
,
Shihe
,
X.
, and
Siginer
,
D. A.
,
2022
, “
Pattern Selection in Rayleigh-Bénard Convection With Non-Linear Viscoelastic Fluids
,”
Phys. Rev.-Fluids
,
7
(
2
), p.
023301
.10.1103/PhysRevFluids.7.023301
15.
Ahlers
,
G.
, and
Nikolaenko
,
A.
,
2010
, “
Effect of a Polymer Additive on Heat Transport in Turbulent Rayleigh-Bénard Convection
,”
Phys. Rev. Lett.
,
104
(
3
), p.
034503
.10.1103/PhysRevLett.104.034503
16.
Cai
,
W.
,
Wei
,
T.
,
Tang
,
X.
,
Liu
,
Y.
,
Li
,
B.
, and
Li
,
F.
,
2019
, “
The Polymer Effect on Turbulent Rayleigh-Bénard Convection Based on PIV Experiments
,”
Exp. Therm. Fluid Sci.
,
103
, pp.
214
221
.10.1016/j.expthermflusci.2019.01.011
17.
Vrahopoulou
,
E. P.
, and
McHugh
,
A. J.
,
1987
, “
Shear-Thickening and Structure Formation in Polymer Solutions
,”
J. Non-Newtonian Fluid Mech.
,
25
(
2
), pp.
157
175
.10.1016/0377-0257(87)85041-3
18.
Georgelos
,
P. N.
, and
Torkelson
,
J. M.
,
1988
, “
The Role of Solution Structure in Apparent Thickening Behavior of Dilute Peo/Water Systems
,”
J. Non-Newtonian Fluid Mech.
,
27
(
2
), pp.
191
204
.10.1016/0377-0257(88)85013-4
19.
Liu
,
W. H.
,
Yu
,
T. L.
, and
Lin
,
H. L.
,
2007
, “
Shear Thickening Behavior of Dilute Poly (Diallyl Dimethyl Ammonium Chloride) Aqueous Solutions
,”
Polym.
,
48
(
14
), pp.
4152
4165
.10.1016/j.polymer.2007.05.012
20.
Franck
,
A.
,
2004
, “
Understanding Rheology of Thermoplastic Polymers
,”
TA Instrum.
,
118
, pp.
1
8
.https://www.tainstruments.com/pdf/literature/AAN013_V_1_U_Thermoplast.pdf
21.
Ebagninin
,
K. W.
,
Benchabane
,
A.
, and
Bekkour
,
K.
,
2009
, “
Rheological Characterization of Polyethylene Oxide Solutions of Different Molecular Weights
,”
J. Colloid Interface Sci.
,
336
(
1
), pp.
360
367
.10.1016/j.jcis.2009.03.014
22.
Bahlouli
,
M. I.
,
Bekkour
,
K.
,
Benchabane
,
A.
,
Hemar
,
Y.
, and
Nemdili
,
A.
,
2013
, “
The Effect of Temperature on the Rheological Behavior of Polyethylene Oxide (PEO) Solutions
,”
Appl. Rheol.
,
23
(
1
), p.
15
.
23.
Kong
,
M.
,
Kang
,
B. X.
, and
Luo
,
Y.
,
2016
, “
Study of the Dissolution of Polyethylene Oxide With a High Molecular Weight in Water
,”
China Pulp. Paper
,
35
(
12
), pp.
20
24
.10.11980/j.issn.0254-508X.2016.12.005
24.
Casanellas
,
L.
,
Alves
,
M. A.
,
Poole
,
R. J.
,
Lerouge
,
S.
, and
Lindner
,
A.
,
2016
, “
The Stabilizing Effect of Shear Thinning on the Onset of Purely Elastic Instabilities in Serpentine Microflows
,”
Soft Matter
,
12
(
29
), pp.
6167
6175
.10.1039/C6SM00326E
25.
Mirsepassi
,
A.
, and
Rankin
,
D. D.
,
2014
, “
Particle Image Velocimetry in Viscoelastic Fluids and Particle Interaction Effects
,”
Exp. Fluids
,
55
(
1
), pp.
1
7
.10.1007/s00348-013-1641-0
26.
Benchabane
,
A.
, and
Bekkour
,
K.
,
2008
, “
Rheological Properties of Carboxymethyl Cellulose (CMC) Solutions
,”
Colloid Polym. Sci.
,
286
(
10
), pp.
1173
1180
.10.1007/s00396-008-1882-2
27.
Ma
,
S. X.
, and
Cooper
,
S. L.
,
2001
, “
Shear Thickening in Aqueous Solutions of Hydrocarbon End-Capped Poly (Ethylene Oxide)
,”
Macromolecules
,
34
(
10
), pp.
3294
3301
.10.1021/ma001772i
28.
Tanaka
,
F.
, and
Edwards
,
S. F.
,
1992
, “
Viscoelastic Properties of Physically Crosslinked Networks. 1. Transient Network Theory
,”
Macromolecules
,
25
(
5
), pp.
1516
1523
.10.1021/ma00031a024
29.
Ewoldt
,
R. H.
,
Johnston
,
M. T.
, and
Caretta
,
L. M.
,
2015
, “
Experimental Challenges of Shear Rheology: How to Avoid Bad Data
,”
Complex Fluids in Biological Systems
,
Springer
,
New York
, pp.
207
241
.
30.
Fam
,
H.
,
Kontopoulou
,
M.
, and
Bryant
,
J. T.
,
2009
, “
Effect of Concentration and Molecular Weight on the Rheology of Hyaluronic Acid/Bovine Calf Serum Solutions
,”
Biorheology
,
46
(
1
), pp.
31
43
.10.3233/BIR-2009-0521
31.
Cogswell
,
F. N.
,
1981
,
Polymer Melt Rheology: A Guide for Industrial Practice
,
Elsevier
, Cambridge, UK.
32.
Ortiz
,
M.
,
De Kee
,
D.
, and
Carreau
,
P. J.
,
1994
, “
Rheology of Concentrated Poly (Ethylene Oxide) Solutions
,”
J. Rheol.
,
38
(
3
), pp.
519
539
.10.1122/1.550472
33.
Akinalan Balik
,
B.
, and
Argin
,
S.
,
2020
, “
Role of Rheology on the Formation of Nanofibers From Pectin and Polyethylene Oxide Blends
,”
J. Appl. Polym. Sci.
,
137
(
3
), p.
48294
.10.1002/app.48294
34.
Lim
,
H.
,
Nam
,
J.
, and
Shin
,
S.
,
2014
, “
Lateral Migration of Particles Suspended in Viscoelastic Fluids in a Microchannel Flow
,”
Microfluid. Nanofluid.
,
17
(
4
), pp.
683
692
.10.1007/s10404-014-1353-7
35.
Feng
,
J.
, and
Joseph
,
D. D.
,
1996
, “
The Motion of Solid Particles Suspended in Viscoelastic Liquids Under Torsional Shear
,”
J. Fluid Mech.
,
324
, pp.
199
222
.10.1017/S0022112096007896
You do not currently have access to this content.