Abstract

Bubble size distributions within the homogeneous and heterogeneous regimes were experimentally investigated with varying gas superficial velocity and viscosity. Air was bubbled into aqueous solutions of glycerin (concentrations from 0% to 85%) through a porous stone sparger. A minimum of 2400 bubbles were measured per operating condition. The probability density functions were shown to be near Gaussian (normal) and lognormal for the homogeneous and heterogeneous regimes, respectively. Deviations from these distributions were observed at the bubble size extrema. The skewness and kurtosis were used to determine the operation regime and further analyzed. The homogeneous results showed excellent agreement with a power-law correlation for initial bubble sizes with only slight modifications to the constant and exponent, even though extrapolation over two orders of magnitude was required for the comparison. A dimensionally reasoned scaling law for bubbles in the heterogeneous regime was formed following similar logic to classic work analyzing the breakage of droplets within isotropic turbulence. Once again, the current results were in excellent agreement with slight modifications to the proportionality constant and exponent.

References

1.
Yang
,
H.
,
Vanka
,
S. P.
, and
Thomas
,
B. G.
,
2018
, “
A Hybrid Eulerian-Eulerian Discrete-Phase Model of Turbulent Bubbly Flow
,”
ASME J. Fluids Eng.
,
140
(
10
), p.
101202
.10.1115/1.4039793
2.
Kantarci
,
N.
,
Borak
,
F.
, and
Ulgen
,
K. O.
,
2005
, “
Bubble Column Reactors
,”
Process Biochem.
,
40
(
7
), pp.
2263
2283
.10.1016/j.procbio.2004.10.004
3.
Elbing
,
B. R.
,
Still
,
A. L.
, and
Ghajar
,
A. J.
,
2016
, “
Review of Bubble Column Reactors With Vibration
,”
Ind. Eng. Chem. Res.
,
55
(
2
), pp.
385
403
.10.1021/acs.iecr.5b02535
4.
Besagni
,
G.
,
Inzoli
,
F.
, and
Ziegenhein
,
T.
,
2018
, “
Two-Phase Bubble Columns: A Comprehensive Review
,”
ChemEngineering
,
2
(
2
), p.
13
.10.3390/chemengineering2020013
5.
Mouza
,
A. A.
,
Dalakoglou
,
G. K.
, and
Paras
,
S. V.
,
2005
, “
Effect of Liquid Properties on the Performance of Bubble Column Reactors With Fine Pore Spargers
,”
Chem. Eng. Sci.
,
60
(
5
), pp.
1465
1475
.10.1016/j.ces.2004.10.013
6.
Kazakis
,
N. A.
,
Mouza
,
A. A.
, and
Paras
,
S. V.
,
2008
, “
Experimental Study of Bubble Formation at Metal Porous Spargers: Effect of Liquid Properties and Sparger Characteristics on the Initial Bubble Size Distribution
,”
Chem. Eng. J.
,
137
(
2
), pp.
265
281
.10.1016/j.cej.2007.04.040
7.
Hinze
,
J. O.
,
1955
, “
Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes
,”
AIChE J.
,
1
(
3
), pp.
289
295
.10.1002/aic.690010303
8.
Lewis
,
D.
, and
Davidson
,
J. F.
,
1982
, “
Bubble Splitting in Shear Flow
,”
Trans. Inst. Chem. Eng.
,
60
(
5
), pp.
283
291
.https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902063904993283
9.
Waghmare
,
Y. G.
,
Dorao
,
C. A.
,
Jakobsen
,
H. A.
,
Knopf
,
F. C.
, and
Rice
,
R. G.
,
2009
, “
Bubble Size Distribution for a Bubble Column Reactor Undergoing Forced Oscillations
,”
Ind. Eng. Chem. Res.
,
48
(
4
), pp.
1786
1796
.10.1021/ie801375h
10.
Deckwer
,
W. D.
,
1992
,
Bubble Column Reactors
,
Wiley Ltd
.,
Chichester, UK
.
11.
Manoharan
,
S.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2017
, “
Effects of Liquid Viscosity on Bubble Growth From Submerged Orifice Plates
,”
ASME
Paper No. HT2017-4885.10.1115/HT2017-4885
12.
Shah
,
Y. T.
,
Kelkar
,
B. G.
,
Godbole
,
S. P.
, and
Deckwer
,
W. D.
,
1982
, “
Design Parameters Estimations for Bubble Column Reactors
,”
AIChE J.
,
28
(
3
), pp.
353
379
.10.1002/aic.690280302
13.
Wilkinson
,
P. M.
,
Spek
,
A. P.
, and
van Dierendonck
,
L. L.
,
1992
, “
Design Parameters Estimation for Scale‐Up of High‐Pressure Bubble Columns
,”
AIChE J.
,
38
(
4
), pp.
544
554
.10.1002/aic.690380408
14.
Kuncová
,
G.
, and
Zahradník
,
J.
,
1995
, “
Gas Holdup and Bubble Frequency in a Bubble Column Reactor Containing Viscous Saccharose Solutions
,”
Chem. Eng. Process.: Process Intensif.
,
34
(
1
), pp.
25
34
.10.1016/0255-2701(94)00563-X
15.
Lange
,
V.
,
Azzopardi
,
B. J.
, and
Licence
,
P.
,
2013
, “
Hydrodynamics of Ionic Liquids in Bubble Columns
,”
Ionic Liquids: New Aspects for the Future
,
J.-I.
Kadokawa
, ed.,
IntechOpen
,
London, UK
.
16.
Eissa
,
S. H.
, and
Schügerl
,
K.
,
1975
, “
Holdup and Backmixing Investigations in Cocurrent and Countercurrent Bubble Columns
,”
Chem. Eng. Sci.
,
30
(
10
), pp.
1251
1256
.10.1016/0009-2509(75)85048-2
17.
Philip
,
J.
,
Proctor
,
J. M.
,
Niranjan
,
K.
, and
Davidson
,
J. F.
,
1990
, “
Gas Hold-Up and Liquid Circulation in Internal Loop Reactors Containing Highly Viscous Newtonian and non-Newtonian Liquids
,”
Chem. Eng. Sci.
,
45
(
3
), pp.
651
664
.10.1016/0009-2509(90)87008-G
18.
Yang
,
J. H.
,
Yang
,
J. I.
,
Kim
,
H. J.
,
Chun
,
D. H.
,
Lee
,
H. T.
, and
Jung
,
H.
,
2010
, “
Two Regime Transitions to Pseudo-Homogeneous and Heterogeneous Bubble Flow for Various Liquid Viscosities
,”
Chem. Eng. Process.: Process Intensif.
,
49
(
10
), pp.
1044
1050
.10.1016/j.cep.2010.07.015
19.
Rabha
,
S.
,
Schubert
,
M.
, and
Hampel
,
U.
,
2014
, “
Regime Transition in Viscous and Pseudo Viscous Systems: A Comparative Study
,”
AIChE J.
,
60
(
8
), pp.
3079
3090
.10.1002/aic.14528
20.
Bach
,
H. F.
, and
Pilhofer
,
T.
,
1978
, “
Variation of Gas Holdup in Bubble Columns With Physical Properties of Liquids and Operating Parameters of Columns
,”
German Chem. Eng.
,
1
, pp.
270
275
.
21.
Godbole
,
S. P.
,
Honath
,
M. F.
, and
Shah
,
Y. T.
,
1982
, “
Holdup Structure in Highly Viscous Newtonian and non-Newtonian Liquids in Bubble Columns
,”
Chem. Eng. Commun.
,
16
(
1–6
), pp.
119
134
.10.1080/00986448208911090
22.
Khare
,
A. S.
, and
Joshi
,
J. B.
,
1990
, “
Effect of Fine Particles on Gas Hold-Up in Three-Phase Sparged Reactors
,”
Chem. Eng. J.
,
44
(
1
), pp.
11
25
.10.1016/0300-9467(90)80050-M
23.
Ruzicka
,
M. C.
,
Drahoš
,
J.
,
Mena
,
P. C.
, and
Teixeira
,
J. A.
,
2003
, “
Effect of Viscosity on Homogeneous–Heterogeneous Flow Regime Transition in Bubble Columns
,”
Chem. Eng. J.
,
96
(
1–3
), pp.
15
22
.10.1016/j.cej.2003.08.009
24.
Olivieri
,
G.
,
Russo
,
M. E.
,
Simeone
,
M.
,
Marzocchella
,
A.
, and
Salatino
,
P.
,
2011
, “
Effects of Viscosity and Relaxation Time on the Hydrodynamics of Gas–Liquid Systems
,”
Chem. Eng. Sci.
,
66
(
14
), pp.
3392
3399
.10.1016/j.ces.2011.01.027
25.
Besagni
,
G.
,
Inzoli
,
F.
,
De Guido
,
G.
, and
Pellegrini
,
L. A.
,
2017
, “
The Dual Effect of Viscosity on Bubble Column Hydrodynamics
,”
Chem. Eng. Sci.
,
158
, pp.
509
538
.10.1016/j.ces.2016.11.003
26.
Orvalho
,
S.
,
Ruzicka
,
M. C.
,
Olivieri
,
G.
, and
Marzocchella
,
A.
,
2015
, “
Bubble Coalescence: Effect of Bubble Approach Velocity and Liquid Viscosity
,”
Chem. Eng. Sci.
,
134
, pp.
205
216
.10.1016/j.ces.2015.04.053
27.
Sanada
,
T.
,
Watanabe
,
M.
, and
Fukano
,
T.
,
2005
, “
Effects of Viscosity on Coalescence of a Bubble Upon Impact With a Free Surface
,”
Chem. Eng. Sci.
,
60
(
19
), pp.
5372
5384
.10.1016/j.ces.2005.04.077
28.
Terasaka
,
K.
, and
Tsuge
,
H.
,
1990
, “
Bubble Formation at a Single Orifice in Highly Viscous Liquids
,”
J. Chem. Eng. Jpn.
,
23
(
2
), pp.
160
165
.10.1252/jcej.23.160
29.
Mohagheghian
,
S.
, and
Elbing
,
B. R.
,
2018
, “
Characterization of Bubble Size Distributions Within a Bubble Column
,”
Fluids
,
3
(
1
), p.
13
.10.3390/fluids3010013
30.
Mohagheghian
,
S.
,
Still
,
A. L.
,
Elbing
,
B. R.
, and
Ghajar
,
A. J.
,
2018
, “
Study of Bubble Size, Void Fraction, and Mass Transport in a Bubble Column Under High Amplitude Vibration
,”
ChemEngineering
,
2
(
2
), p.
16
.10.3390/chemengineering2020016
31.
Mohagheghian
,
S.
,
Ghajar
,
A. J.
, and
Elbing
,
B. R.
,
2020
, “
Effect of Vertical Vibration on the Mixing Time of a Passive Scalar in a Sparged Bubble Column Reactor
,”
Fluids
,
5
(
1
), p.
6
.10.3390/fluids5010006
32.
Still
,
A.
,
2010
, “
Multiphase Phenomena in a Vibrating Bubble Column Reactor
,” M.S. thesis,
Oklahoma State University
,
Stillwater, OK
.
33.
Mohagheghian
,
S.
,
2019
, “
Study of Bubbly and Annular Flow Using Quantitative Flow Visualization
,” Ph.D. dissertation,
Oklahoma State University
,
Stillwater, OK
.
34.
Houghton
,
G.
,
McLean
,
A. M.
, and
Ritchie
,
P. D.
,
1957
, “
Mechanism of Formation of Gas Bubble-Beds
,”
Chem. Eng. Sci.
,
7
(
1–2
), pp.
40
50
.10.1016/0009-2509(57)80017-7
35.
Besagni
,
G.
,
Di Pasquali
,
A.
,
Gallazzini
,
L.
,
Gottardi
,
E.
,
Colombo
,
L. P. M.
, and
Inzoli
,
F.
,
2017
, “
The Effect of Aspect Ratio in Counter-Current Gas-Liquid Bubble Columns: Experimental Results and Gas Holdup Correlations
,”
Int. J. Multiphase Flow
,
94
, pp.
53
78
.10.1016/j.ijmultiphaseflow.2017.04.015
36.
Abràmoff
,
M. D.
,
Magalhães
,
P. J.
, and
Ram
,
S. J.
,
2004
, “
Image Processing With ImageJ
,”
Biophotonics Int.
,
11
(
7
), pp.
36
42
.https://imagescience.org/meijering/publications/download/bio2004.pdf
37.
Peters
,
R.
, and
Rasband
,
W. S.
,
2012
,
ImageJ
,
US National Institutes of Health
,
Bethesda, MD
.
38.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.10.1038/nmeth.2089
39.
Rasband
,
W. S.
, 1997–
2016
, “
ImageJ
,”
U.S. National Institutes of Health
,
Bethesda, MD
, accessed Apr. 16, 2013, http://imagej.nih.gov/ij
40.
Taleb
,
N. N.
,
2007
, “
Black Swans and the Domains of Statistics
,”
Am. Stat.
,
61
(
3
), pp.
198
200
.10.1198/000313007X219996
41.
Alves
,
S. S.
,
Maia
,
C. I.
,
Vasconcelos
,
J. M. T.
, and
Serralheiro
,
A. J.
,
2002
, “
Bubble Size in Aerated Stirred Tanks
,”
Chem. Eng. J.
,
89
(
1–3
), pp.
109
117
.10.1016/S1385-8947(02)00008-6
You do not currently have access to this content.