Abstract

Industrial turbomachines, such as fans and blowers for drying, venting, cooling or conveying tasks, are often used in industrial applications and frequently are large energy consumers. Thus, there is a need for further optimization and efficiency increase. For fans and blowers, gaps between moving parts are unavoidable due to manufacturing tolerances and possible thermal expansion. In this work, the radial gap and axial overlap between the inlet nozzle and the impeller and its impact on the performance characteristics have been investigated, because detailed knowledge of the losses due to the gap is important for the design of more efficient fans. The presented analysis was performed with the Navier–Stokes-solver ansyscfx. After a detailed grid study, the quantitative effect of the gaps on the performance of the centrifugal fan has been investigated by a variation of the radial gap and axial overlap. It was found, that at the best efficiency point (BEP) the efficiency drops between 1 and 6% depending on the gap width and at partial load it might drop fast also depending on the gap width, up to 50–60%. At overload the drop in efficiency is smaller than at partial load, dropping between 1 and 10%, depending on the gap width and the flowrate. In addition, a metamodel based on a dimensional and regression analysis was developed for partial and overload to predict the gap flowrate without additional computational fluid dynamics (CFD) simulations. The prediction accuracy between the CFD results and the dimensional analysis based metamodel is about 5–10%.

References

1.
Klaes
,
K.
,
1994
, “
Radialventilatoren Berechnung - Entwurf - Optimierung - Betriebsverhalten
,”
Ventilatoren
,
L.
Bommes
,
J.
Fricke
, and
K.
Klaes
, eds.,
Vulkan-Verlag
, pp.
108
134
.
2.
Davidson
,
S. C.
,
1913
, “Deutsches Patent,” German Patent No. 274131.
3.
Anderson
,
A. L.
,
1937
, “USA Patent,” USA Patent No. 2,166,276.
4.
Epple
,
P.
,
Karic
,
B.
,
Ilic
,
C.
,
Becker
,
S.
,
Durst
,
F.
, and
Delgado
,
A.
,
2009
, “
Design of Radial Impellers: A Combined Extended Analytical and Numerical Method
,”
Proc. IMechE
, 223 Part C(4), pp.
901
917
.10.1243/09544062JMES1196
5.
Bommes
,
L.
,
1962
, “
Zur Gestaltung Des Radeinlaufs Bei Radialventilatoren
,”
Wärme-, Lüftungs- Und Gesundheitstechnik
,
1
(
1
), pp.
12
16
.
6.
Bommes
,
L.
,
1990
, “
Radialventilatoren, Theorie - Berechnung - Entwurf - Betriebsverhalten
,”
Ventilatoren
,
W. J.
Bartz
, ed.,
Expert-Verlag
, pp.
202
242
.
7.
Bommes
,
L.
,
1974
, “
Problemlösung Bei Der Gestaltung Von Radialventilatoren
,”
HLH
,
25
(
12
), pp.
420
425
.
8.
Bommes
,
L.
,
1957
, “Deutsches Patent,” German Patent Number 1276858.
9.
Bommes
,
L.
,
1959
, “Österreichisches Patent,” Austrian Patent Number 205155.
10.
Kramer
,
C.
,
1990
, “
Sonderventilatoren
,”
Ventilatoren
,
W. J.
Bartz
, ed.,
Expert-Verlag
, pp.
165
177
.
11.
Wright
,
T.
,
Tzou
,
K. T. S.
,
Greaves
,
K. W.
, and
Madhavan
,
S.
,
1982
, “
The Internal Flow Field and Overall Performance of a Centrifugal Fan Impeller: Experiment and Prediction
,”
ASME
Paper No. 82-JPGC-GT-16.10.1115/82-JPGC-GT-16
12.
Tamm
,
A.
, and
Stoffel
,
B.
,
2002
, “
The Influences of Gap Clearance and Surface Roughness on Leakage Loss and Disc Friction of Centrifugal Pumps
,”
ASME
Paper No. FEDSM2022-31324.10.1115/FEDSM2022-31324
13.
Yu
,
Z.
,
Li
,
S.
,
He
,
W.
,
Wang
,
W.
,
Huang
,
D.
, and
Zhu
,
Z.
,
2005
, “
Numerical Simulation of Flow Field for a Whole Centrifugal Fan and Analysis of the Effects of Blade Inlet Angle and Imepeller Gap
,”
HVACR Res.
,
11
(
2
), pp.
263
283
.10.1080/10789669.2005.10391137
14.
Lee
,
Y.-T.
,
2010
, “
Impact of Fan Gap Flow on the Centrifugal Fan Aerodynamics
,”
ASME J. Fluids Eng.
,
132
(
9
), p.
091103
.10.1115/1.4002450
15.
Lee
,
Y.-T.
,
2010
, “
Impact of Fan Gap Flow to the Centrifugal Impeller Aerodynamics
,”
ASME
Paper No. GT2010-22381.10.1115/GT2010-22381
16.
Lee
,
Y.-T.
,
Ahuja
,
V.
,
Hosangadi
,
A.
,
Slipper
,
M. E.
,
Mulvihill
,
L. P.
,
Birkbeck
,
R.
, and
Coleman
,
R. M.
,
2008
, “
Investigation of an Air Supply Centrifugal Fan for Air Cushion Vehicle: Impeller Design and Validation
,”
ASME
Paper No. GT2008-50376.10.1115/GT2008-50376
17.
Nagae
,
T.
, and
Zheng
,
Z.
,
2011
, “
Study of High Efficiency and Low Noise Centrifugal Fan
,”
ASME
Paper No. AJK2011-22047.10.1115/AJK2011-22047
18.
Gholamian
,
M.
,
Rao
,
G. K. M.
, and
Panitapu
,
B.
,
2013
, “
Effect of Axial Gap Between Inlet Nozzle and Impeller on Efficiency and Flow Pattern in Centrifugal Fans, Numerical and Experimental Analysis
,”
Case Stud. Therm. Eng.
,
1
(
1
), pp.
26
37
.10.1016/j.csite.2013.08.003
19.
Fritsche
,
M.
,
Epple
,
P.
,
Russwurm
,
H.
, and
Gast
,
S.
,
2018
, “
Numerical Investigation of the Impact of Radial and Axial Gaps Between Stationary Inlet Nozzle and Radial Impeller Inlet on the Performance Characteristics of Centrifugal Fans
,”
Proceedings of the 3rd International Conference on Engineering Science and Innovative Technology (ESIT 2018)
, Phang-Nga, Thailand, Apr. 19–22, Paper No. 30.
20.
Epple
,
P.
,
Delgado
,
A.
, and
Durst
,
F.
,
2010
, “
A Theoretical Derivation Of The Cordier Diagram For Turbomachines
,”
Proc. IMechE
, 225 Part C(2), pp.
354
368
.10.1243/09544062JMES2285
21.
Cordier
,
O.
,
1953
, “
Ähnlichkeitsbedingungen Für Strömungsmaschinen
,”
Brennstoff-Waerme-Kraft
, Vol.
5, Nr. 10
.
22.
Bohl
,
W.
,
1983
,
Ventilatoren - Berechnung, Konstruktion, Versuch, Betrieb
,
Vogel Fachbuch Verlag
,
Würzburg
.
23.
Menter
,
F. R.
,
1993
, “
Zonal Two Equation k/Omega, Turbulence Models for Aerodynamic Flows
,”
AIAA
Paper No. 93–2906.https://arc.aiaa.org/doi/10.2514/6.1993-2906
24.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
25.
Grotjans
,
H.
, and
Menter
,
F. R.
,
1998
, “
Wall Functions for General Application CFD Codes
,”
ECCOMAS 98 Proceedings of the Fourth European Computational Fluid Dynamics Conference
, John Wiley & Sons, Chichester, UK, pp.
1112
1117
.
26.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul., Heat Mass Transfer
,
4
, pp.
625
632
.
27.
Fritsche
,
M.
,
2018
, “
CFD Simulation for the Optimization of Fans
,”
High Performance Computing at RRZE
, Regionales Rechenzentrum Erlangen (RRZE).
28.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
29.
Richardson
,
L. F.
,
1910
, “
The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses In a Masonry Dam
,”
Trans. R. Soc. London, Ser. A
,
210
, pp.
370
357
.10.1098/rsta.1911.0009
30.
Richardson
,
L. F.
, and
Gaunt
,
J. A.
,
1927
, “
The Deferred Approach to the Limit
,”
Philos. Trans. R. Soc. London, Ser. A
,
226
, pp.
299
361
.10.1098/rsta.1927.0008
31.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
32.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Ann. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.10.1146/annurev.fluid.29.1.123
33.
Carolus
,
T.
,
2020
,
Ventilatoren
,
Springer Vieweg
,
Wiesbaden
.
34.
Epple
,
P.
,
Fritsche
,
M.
,
Reinker
,
F.
, and
Aus der Wiesche
,
S.
,
2019
, “
Numerical Verification of the Thermodynamic Determination of the Hydraulic Efficiency of Radial Fans
,”
ASME
Paper No. IMECE2019-11417.10.1115/IMECE2019-11417
35.
Epple
,
P.
,
Fritsche
,
M.
, and
Russwurm
,
H.
,
2016
, “
The Impact of the Interaction Between Impeller and Spiral Casing on the Performance of Radial Fans
,”
ASME
Paper No. IMECE2016-66072.10.1115/IMECE2016-66072
36.
Epple
,
P.
,
Miclea
,
M.
,
Pfannschmidt
,
K.
,
Grobeis
,
D.
, and
Delgado
,
A.
,
2010
, “
A Design Method of Radial Fans Considering the Torque-Speedcharacteristic of the Motor
,”
ASME
Paper No. IMECE2010-39050.10.1115/IMECE2010-39050
37.
Epple
,
P.
,
Miclea
,
M.
,
Luschmann
,
C.
,
Ilic
,
C.
, and
Delgado
,
A.
,
2009
, “
An Extended Analytical and Numerical Design Method With Applications of Radial Fans
,”
ASME
Paper No. IMECE2009-11283.10.1115/IMECE2009-11283
38.
Epple
,
P.
,
Miclea
,
M.
,
Schmidt
,
H.
,
Delgado
,
A.
, and
Russwurm
,
H.
,
2009
, “
High Pressure Fan Design for Biogas Plants
,”
ASME
Paper No. IMECE2009-12852.10.1115/IMECE2009-12852
39.
Epple
,
P.
,
Fritsche
,
M.
,
Steppert
,
M.
, and
Steber
,
M.
,
2018
, “
New Design Method for Spiral Casings Considering the Properties of the Impeller and Spiral Casing at Design and Off-Design Conditions and Numerical Verification With CFD
,”
ASME
Paper No. IMECE2018-88673.10.1115/IMECE2018-88673
40.
Fritsche
,
M.
,
Epple
,
P.
,
Steber
,
M.
, and
Russwurm
,
H.
,
2017
, “
Erosion Optimized Radial Fan Impellers and Volutes for Particle Flows
,”
ASME
Paper No. IMECE2017-71825.10.1115/IMECE2017-71825
41.
Fritsche
,
M.
,
Epple
,
P.
, and
Russwurm
,
H.
,
2016
, “
Erosion Optimized Radial Fan Volutes for Particle Flows
,”
Proceedings of the Symposium on Innovative Simulations in Turbomachinery ISimT-16
,
Regensburg
, Germany.
42.
Fritsche
,
M.
,
Epple
,
P.
, and
Delgado
,
A.
,
2018
, “
The Impact of the Gas Temperature and of the Relative Humidity on the Performance of Fans Operating in Drying Plants
,”
ASME
Paper No. IMECE2018-88674.10.1115/IMECE2018-88674
43.
Aus der Wiesche
,
S.
,
Reinker
,
F.
,
Wagner
,
R.
,
Epple
,
P.
,
Fritsche
,
M.
, and
Russwurm
,
H.
,
2019
, “
An Accurate Thermal Measurement Approach for Determining Fan Efficiencies Based on System Identification
,”
ASME
Paper No. AJKFLUIDS2019-4613.10.1115/AJKFLUIDS2019-4613
44.
Fritsche
,
M.
,
Epple
,
P.
,
Hasselmann
,
K.
,
Reinker
,
F.
,
Wagner
,
R.
, and
Aus der Wiesche
,
S.
,
2019
, “
CFD-Simulation of Centrifugal Fan Performance Characteristics Using Ideal and Real Gas Models for Air and Organic Fluids
,”
ASME
Paper No. AJKFLUIDS2019-4815.10.1115/AJKFLUIDS2019-4815
45.
Reinker
,
F.
,
Wagner
,
R.
,
Hasselmann
,
K.
,
Aus der Wiesche
,
S.
,
Fritsche
,
M.
,
Epple
,
P.
, and
Russwurm
,
H.
,
2019
, “
Testing, Modeling and Simulation of Fans Working With Organic Vapors
,”
ASME
Paper No. FEDSM2018-83076.10.1115/FEDSM2018-83076
46.
Eck
,
B.
,
2003
,
Ventilatoren
,
Springer Verlag
,
Verlin
(Reprint).
47.
Bohl
,
W.
,
2013
,
Strömungsmaschinen 2
,
Vogel Fachbuch
,
Würzburg
.
48.
Bohl
,
W.
, and
Elmendorf
,
W.
,
2013
,
Strömungsmaschinen 1 - Aufbau Und Wirkungsweise
,
Vogel Fachbuch
,
Würzburg
.
49.
Schindl
,
H.
, and
Payer
,
H.-J.
,
2015
,
Strömungsmaschinen - Inkompressible Medien
,
Walter de Gruyter
,
Berlin
.
50.
Sigloch
,
H.
,
2021
,
Strömungsmaschinen: Grundlagen Und Anwendungen
, 7th ed.,
Carl Hanser Verlag
, München.
51.
Fritsche
,
M.
,
Epple
,
P.
, and
Delgado
,
A.
,
2022
, “
The Impact of Scaling on the Gap Flow Rate of Radial Fans
,”
ASME
Paper No. FEDSM2022,87987.10.1115/FEDSM2022,87987
52.
Pritchard
,
P.
,
2011
,
Fox and McDonald’s Introduction to Fluid Mechanics
,
Wiley
,
Hoboken
.
53.
Spurk
,
J. H.
,
1992
,
Dimensionsanalyse in Der Strömungslehre
,
Springer
,
Berlin
.
54.
Spiegel
,
M.
, and
Stephens
,
L.
,
2017
,
Schaum's Outline of Statistics
, 6 ed.,
McGraw-Hill Education Ltd
., New York.
55.
Sentek
,
J.
, and
Szarska
,
K.
,
1994
, “
Die Gestaltung Von Radialventilatoren Mit Rückwärtsgegrümmten Schaufeln
,”
Ventilatoren
,
L.
Bommes
,
J.
Fricke
, and
K.
Klaes
, eds.,
Vulkan-Verlag
, pp.
135
143
.
56.
Klaes
,
K.
,
1990
, “
Vorausberechnung Der Kennlinie Von Radialventilatoren
,”
Ventilatoren
,
Bartz
,
W. J.
, ed.,
Expert-Verlag
, pp.
243
258
.
You do not currently have access to this content.