Abstract

Centrifugal pumps conveying gas–liquid flows are often designed based on pure liquid flows due to limited understanding of gas formations within a gas–liquid flow. Computational fluid dynamics (CFD) can provide insights into the flow characteristics, yet standard multiphase models are not able to describe a wide range of spatial scales. In this study, a hybrid multiphase approach for turbulent flows based on an Eulerian-Eulerian solver with volume-of-fluid (VOF) enhancements is applied, which can handle multiple flow regimes (continuous gas/liquid, disperse bubbles) at once. Large eddy simulations (LES) of gas–liquid-flows through a diverging horizontal channel (diffuser) are performed to evaluate the possibilities and limitations of this approach. Three representative cases, each containing different flow characteristics, are computed using a fixed bubble size approach. The results show that the hybrid approach is able to capture all flow characteristics and predict the gas void size and position precisely. However, it can be observed that the performance of the approach significantly depends on the specified bubble size.

References

1.
Caridad
,
J.
,
Asuaje
,
M.
,
Kenyery
,
F.
,
Tremante
,
A.
, and
Aguillón
,
O.
,
2008
, “
Characterization of a Centrifugal Pump Impeller Under Two-Phase Flow Conditions
,”
J. Pet. Sci. Eng.
,
63
(
1–4
), pp.
18
22
.10.1016/j.petrol.2008.06.005
2.
Zhu
,
J.
, and
Zhang
,
H.-Q.
,
2018
, “
A Review of Experiments and Modeling of Gas-Liquid Flow in Electrical Submersible Pumps
,”
Energies
,
11
(
1
), p.
180
.10.3390/en11010180
3.
Chan
,
A.
,
Kawaji
,
M.
,
Nakamura
,
H.
, and
Kukita
,
Y.
,
1999
, “
Experimental Study of Two-Phase Pump Performance Using a Full Size Nuclear Reactor Pump
,”
Nucl. Eng. Des.
,
193
(
1–2
), pp.
159
172
.10.1016/S0029-5493(99)00150-8
4.
Furuya
,
O.
,
1985
, “
An Analytical Model for Prediction of Two-Phase (Noncondensable) Flow Pump Performance
,”
ASME J. Fluids Eng.
,
107
(
1
), pp.
139
147
.10.1115/1.3242432
5.
MacArthur
,
J. W.
, and
Grald
,
E. W.
,
1989
, “
Unsteady Compressible Two-Phase Flow Model for Predicting Cyclic Heat Pump Performance and a Comparison With Experimental Data
,”
Int. J. Refrig.
,
12
(
1
), pp.
29
41
.10.1016/0140-7007(89)90009-1
6.
Mansour
,
M.
,
Wunderlich
,
B.
, and
Thévenin
,
D.
,
2018
, “
Effect of Tip Clearance Gap and Inducer on the Transport of Two-Phase Air-Water Flows by Centrifugal Pumps
,”
Exp. Therm. Fluid Sci.
,
99
, pp.
487
509
.10.1016/j.expthermflusci.2018.08.018
7.
Mansour
,
M.
,
Wunderlich
,
B.
, and
Thévenin
,
D.
,
2018
, “
Experimental Study of Two-Phase Air/Water Flow in a Centrifugal Pump Working With a Closed or a Semi-Open Impeller
,”
ASME
Paper No. GT2018-75380.10.1115/GT2018-75380
8.
Müller
,
T.
,
Limbach
,
P.
, and
Skoda
,
R.
,
2015
, “
Numerical 3D RANS Simulation of Gas-Liquid Flow in a Centrifugal Pump With an Euler-Euler Two-Phase Model and a Dispersed Phase Distribution
,” 11 th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics, Madrid, Spain, Mar. 23–27, Paper No.
ETC2015-076
.https://www.researchgate.net/publication/280879977_Numerical_3D_RANS_simulation_of_gasliquid_flow_in_a_centrifugal_pump_with_an_Euler-Euler_two-phase_model_and_a_dispersed_phase_distribution
9.
Zhu
,
J.
, and
Zhang
,
H.-Q.
,
2016
, “
Mechanistic Modeling and Numerical Simulation of in-Situ Gas Void Fraction Inside Esp Impeller
,”
J. Natural Gas Sci. Eng.
,
36
, pp.
144
154
.10.1016/j.jngse.2016.10.020
10.
Zhu
,
J.
, and
Zhang
,
H.-Q.
,
2017
, “
Numerical Study on Electrical-Submersible-Pump Two-Phase Performance and Bubble-Size Modeling
,”
SPE Prod. Oper.
,
32
(
03
), pp.
267
278
.10.2118/170727-PA
11.
Stel
,
H.
,
Ofuchi
,
E. M.
,
Chiva
,
S.
, and
Morales
,
R. E.
,
2022
, “
Numerical Assessment of Performance Characteristics and Two-Phase Flow Dynamics of a Centrifugal Rotor Operating Under Gas Entrainment Condition
,”
Exp. Comput. Multiphase Flow
,
4
(
3
), pp.
221
240
.10.1007/s42757-020-0089-8
12.
Hundshagen
,
M.
,
Mansour
,
M.
,
Thévenin
,
D.
, and
Skoda
,
R.
,
2021
, “
3D Simulation of Gas-Laden Liquid Flows in Centrifugal Pumps and the Assessment of Two-Fluid CFD Methods
,”
Exp. Comput. Multiphase Flow
,
3
(
3
), pp.
186
207
.10.1007/s42757-020-0080-4
13.
Posa
,
A.
, and
Lippolis
,
A.
,
2019
, “
Effect of Working Conditions and Diffuser Setting Angle on Pressure Fluctuations Within a Centrifugal Pump
,”
Int. J. Heat Fluid Flow
,
75
, pp.
44
60
.10.1016/j.ijheatfluidflow.2018.11.011
14.
Besagni
,
G.
,
Inzoli
,
F.
,
Ziegenhein
,
T.
, and
Lucas
,
D.
,
2017
, “
Computational Fluid-Dynamic Modeling of the Pseudo-Homogeneous Flow Regime in Large-Scale Bubble Columns
,”
Chem. Eng. Sci.
,
160
, pp.
144
160
.10.1016/j.ces.2016.11.031
15.
Chen
,
P.
,
Sanyal
,
J.
, and
Duduković
,
M.
,
2005
, “
Numerical Simulation of Bubble Columns Flows: Effect of Different Breakup and Coalescence Closures
,”
Chem. Eng. Sci.
,
60
(
4
), pp.
1085
1101
.10.1016/j.ces.2004.09.070
16.
Dhotre
,
M.
,
Niceno
,
B.
, and
Smith
,
B.
,
2008
, “
Large Eddy Simulation of a Bubble Column Using Dynamic Sub-Grid Scale Model
,”
Chem. Eng. J.
,
136
(
2–3
), pp.
337
348
.10.1016/j.cej.2007.04.016
17.
Fletcher
,
D. F.
,
McClure
,
D. D.
,
Kavanagh
,
J. M.
, and
Barton
,
G. W.
,
2017
, “
CFD Simulation of Industrial Bubble Columns: Numerical Challenges and Model Validation Successes
,”
Appl. Math. Modell.
,
44
, pp.
25
42
.10.1016/j.apm.2016.08.033
18.
Khan
,
Z.
,
Bhusare
,
V. H.
, and
Joshi
,
J. B.
,
2017
, “
Comparison of Turbulence Models for Bubble Column Reactors
,”
Chem. Eng. Sci.
,
164
, pp.
34
52
.10.1016/j.ces.2017.01.023
19.
Liang
,
X.-F.
,
Pan
,
H.
,
Su
,
Y.-H.
, and
Luo
,
Z.-H.
,
2016
, “
CFD-PBM Approach With Modified Drag Model for the Gas–Liquid Flow in a Bubble Column
,”
Chem. Eng. Res. Des.
,
112
, pp.
88
102
.10.1016/j.cherd.2016.06.014
20.
Pourtousi
,
M.
,
Sahu
,
J.
, and
Ganesan
,
P.
,
2014
, “
Effect of Interfacial Forces and Turbulence Models on Predicting Flow Pattern Inside the Bubble Column
,”
Chem. Eng. Process. Process Intensif.
,
75
, pp.
38
47
.10.1016/j.cep.2013.11.001
21.
Tabib
,
M. V.
,
Roy
,
S. A.
, and
Joshi
,
J. B.
,
2008
, “
CFD Simulation of Bubble Column–an Analysis of Interphase Forces and Turbulence Models
,”
Chem. Eng. J.
,
139
(
3
), pp.
589
614
.10.1016/j.cej.2007.09.015
22.
Tomiyama
,
A.
, and
Shimada
,
N.
,
2001
, “
A Numerical Method for Bubbly Flow Simulation Based on a Multi-Fluid Model
,”
ASME J. Pressure Vessel Technol.
,
123
(
4
), pp.
510
516
.10.1115/1.1388010
23.
Buffo
,
A.
,
Vanni
,
M.
, and
Marchisio
,
D.
,
2012
, “
Multidimensional Population Balance Model for the Simulation of Turbulent Gas–Liquid Systems in Stirred Tank Reactors
,”
Chem. Eng. Sci.
,
70
, pp.
31
44
.10.1016/j.ces.2011.04.042
24.
Hu
,
X.
,
Ilgun
,
A. D.
,
Passalacqua
,
A.
,
Fox
,
R. O.
,
Bertola
,
F.
,
Milosevic
,
M.
, and
Visscher
,
F.
,
2021
, “
CFD Simulations of Stirred-Tank Reactors for Gas-Liquid and Gas-Liquid-Solid Systems Using OpenFOAM®
,”
Int. J. Chem. Reactor Eng.
,
19
(
2
), pp.
193
207
.10.1515/ijcre-2019-0229
25.
Kamp
,
J.
, and
Kraume
,
M.
,
2016
, “
From Single Drop Coalescence to Droplet Swarms–Scale-Up Considering the Influence of Collision Velocity and Drop Size on Coalescence Probability
,”
Chem. Eng. Sci.
,
156
, pp.
162
177
.10.1016/j.ces.2016.08.028
26.
Krepper
,
E.
,
Lucas
,
D.
,
Frank
,
T.
,
Prasser
,
H.-M.
, and
Zwart
,
P. J.
,
2008
, “
The Inhomogeneous Musig Model for the Simulation of Polydispersed Flows
,”
Nucl. Eng. Des.
,
238
(
7
), pp.
1690
1702
.10.1016/j.nucengdes.2008.01.004
27.
Liao
,
Y.
,
Rzehak
,
R.
,
Lucas
,
D.
, and
Krepper
,
E.
,
2015
, “
Baseline Closure Model for Dispersed Bubbly Flow: Bubble Coalescence and Breakup
,”
Chem. Eng. Sci.
,
122
, pp.
336
349
.10.1016/j.ces.2014.09.042
28.
Rzehak
,
R.
,
Krepper
,
E.
,
Liao
,
Y.
,
Ziegenhein
,
T.
,
Kriebitzsch
,
S.
, and
Lucas
,
D.
,
2015
, “
Baseline Model for the Simulation of Bubbly Flows
,”
Chem. Eng. Technol.
,
38
(
11
), pp.
1972
1978
.10.1002/ceat.201500118
29.
Mansour
,
M.
,
Kováts
,
P.
,
Wunderlich
,
B.
, and
Thévenin
,
D.
,
2018
, “
Experimental Investigations of a Two-Phase Gas/Liquid Flow in a Diverging Horizontal Channel
,”
Exp. Therm. Fluid Sci.
,
93
, pp.
210
217
.10.1016/j.expthermflusci.2017.12.033
30.
Hänsch
,
S.
,
Lucas
,
D.
,
Krepper
,
E.
, and
Höhne
,
T.
,
2012
, “
A Multi-Field Two-Fluid Concept for Transitions Between Different Scales of Interfacial Structures
,”
Int. J. Multiphase Flow
,
47
, pp.
171
182
.10.1016/j.ijmultiphaseflow.2012.07.007
31.
C˘erne
,
G.
,
Petelin
,
S.
, and
Tiselj
,
I.
,
2001
, “
Coupling of the Interface Tracking and the Two-Fluid Models for the Simulation of Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
171
(
2
), pp.
776
804
.10.1006/jcph.2001.6810
32.
Weller
,
H. G.
,
2008
, “
A New Approach to VOF-Based Interface Capturing Methods for Incompressible and Compressible Flow
,”
OpenCFD Ltd
., Report TR/HGW,
4
, p.
35
.
33.
Wardle
,
K. E.
, and
Weller
,
H. G.
,
2013
, “
Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction
,”
Int. J. Chem. Eng.
,
2013
, pp.
1
13
.10.1155/2013/128936
34.
Shonibare
,
O. Y.
, and
Wardle
,
K. E.
,
2015
, “
Numerical Investigation of Vertical Plunging Jet Using a Hybrid Multifluid–VOF Multiphase CFD Solver
,”
Int. J. Chem. Eng.
,
2015
, pp.
1
14
.10.1155/2015/925639
35.
De Santis
,
A.
,
Colombo
,
M.
,
Hanson
,
B. C.
, and
Fairweather
,
M.
,
2021
, “
A Generalized Multiphase Modelling Approach for Multiscale Flows
,”
J. Comput. Phys.
,
436
, p.
110321
.10.1016/j.jcp.2021.110321
36.
Meller
,
R.
,
Schlegel
,
F.
, and
Lucas
,
D.
,
2021
, “
Basic Verification of a Numerical Framework Applied to a Morphology Adaptive Multifield Two-Fluid Model Considering Bubble Motions
,”
Int. J. Numer. Methods Fluids
,
93
(
3
), pp.
748
773
.10.1002/fld.4907
37.
Kopparthy
,
S.
,
Mansour
,
M.
,
Janiga
,
G.
, and
Thévenin
,
D.
,
2020
, “
Numerical Investigations of Turbulent Single-Phase and Two-Phase Flows in a Diffuser
,”
Int. J. Multiphase Flow
,
130
, p.
103333
.10.1016/j.ijmultiphaseflow.2020.103333
38.
Hundshagen
,
M.
,
Rave
,
K.
,
Nguyen
,
B.-D.
,
Popp
,
S.
,
Hasse
,
C.
,
Mansour
,
M.
,
Thevenin
,
D.
, and
Skoda
,
R.
,
2022
, “
Two-Phase Flow Simulations of Liquid/Gas Transport in Radial Centrifugal Pumps With Special Emphasis on the Transition From Bubbles to Adherent Gas Accumulations
,”
ASME J. Fluids Eng.
,
144
(
10
), p. 101202.10.1115/1.4054264
39.
The OpenFOAM Foundation Ltd.
,
2021
, “Openfoam-9,” accessed July 15, 2021, https://github.com/OpenFOAM/OpenFOAM-9
40.
Nicoud
,
F.
,
Toda
,
H. B.
,
Cabrit
,
O.
,
Bose
,
S.
, and
Lee
,
J.
,
2011
, “
Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations
,”
Phys. Fluids
,
23
(
8
), p.
085106
.10.1063/1.3623274
41.
Ishii
,
M.
, and
Zuber
,
N.
,
1979
, “
Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows
,”
AIChE J.
,
25
(
5
), pp.
843
855
.10.1002/aic.690250513
42.
Magnaudet
,
J.
,
Rivero
,
M.
, and
Fabre
,
J.
,
1995
, “
Accelerated Flows Past a Rigid Sphere or a Spherical Bubble. Part 1. Steady Straining Flow
,”
J. Fluid Mech.
,
284
, pp.
97
135
.10.1017/S0022112095000280
43.
ANSYS
,
2017
, “ANSYS CFX-Solver Theory Guide, Release 18.0”.
44.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
Gmsh: A Three-Dimensional Finite Element Mesh Generator With Built-in Pre- and Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
.10.1002/nme.2579
45.
Issa
,
R.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
46.
Cao
,
Y.
, and
Tamura
,
T.
,
2016
, “
Large-Eddy Simulations of Flow Past a Square Cylinder Using Structured and Unstructured Grids
,”
Comput. Fluids
,
137
, pp.
36
54
.10.1016/j.compfluid.2016.07.013
47.
Martínez
,
J.
,
Piscaglia
,
F.
,
Montorfano
,
A.
,
Onorati
,
A.
, and
Aithal
,
S.
,
2015
, “
Influence of Spatial Discretization Schemes on Accuracy of Explicit LES: Canonical Problems to Engine-Like Geometries
,”
Comput. Fluids
,
117
, pp.
62
78
.10.1016/j.compfluid.2015.05.007
48.
Jasak
,
H.
,
Weller
,
H.
, and
Gosman
,
A.
,
1999
, “
High Resolution Nvd Differencing Scheme for Arbitrarily Unstructured Meshes
,”
Int. J. Numerical Methods Fluids
,
31
(
2
), pp.
431
449
.10.1002/(SICI)1097-0363(19990930)31:2<431::AID-FLD884>3.0.CO;2-T
49.
Davidovic
,
M.
,
Falkenstein
,
T.
,
Bode
,
M.
,
Cai
,
L.
,
Kang
,
S.
,
Hinrichs
,
J.
, and
Pitsch
,
H.
,
2017
, “
LES of n-Dodecane Spray Combustion Using a Multiple Representative Interactive Flamelets Model
,”
Oil Gas Sci. Technol.–Revue d'IFP Energies Nouvelles
,
72
(
5
), p.
29
.10.2516/ogst/2017019
50.
Mansour
,
M. K. B.
,
2020
, “
Transport of Two-Phase Air-Water Flows in Radial Centrifugal Pumps
,” Ph.D. thesis,
Faculty of Process and System Engineering, Otto-von-Guericke-University of Magdeburg
, Germany.
You do not currently have access to this content.