Abstract

High-porosity metal foams have been extensively studied as an attractive candidate for efficient and compact heat exchanger design. With the advancements in additive manufacturing, such foams can be manufactured with controlled topology to yield highly tailorable mechanical and transport properties. In this study, a lattice Boltzmann method (LBM)-based pore-scale model is implemented to simulate the fluid flow in additively manufactured (AM) metal foams with unit cell topologies of Cube, Face Diagonal (FD)-Cube, Tetrakaidecahedron (TKD), and Octet lattices. The pressure gradient versus average velocity profiles predicted by the LBM model were validated against in-house measurements on the AM lattice samples with the same unit cell topologies. Based on the simulation results, a novel hybrid model is proposed to accurately predict the volume averaged flow properties (permeability and inertial coefficients) of the four structures. Specifically, the linear LBM (neglecting inertial forces) is first implemented to obtain the intrinsic permeability, and then the standard LBM is applied to obtain the inertial coefficient. Convenient correlations for those flow properties as a function of porosity and fiber diameter are constructed. The effects of the AM print qualities on the flow properties are also discussed. The advantages of the hybrid model compared to the polynomial fitting approach for determining flow properties are discussed and compared quantitatively. The hybrid model and presented results are valuable for flow and thermal transport evaluation when designing new metal foams for specific applications and with different materials and topologies. The presented correlations based on pore-scale simulations can also be conveniently used in volume-averaged models to predict the macroscale flow behavior in such complex structures.

References

1.
Rashidi
,
S.
,
Kashefi
,
M. H.
,
Kim
,
K. C.
, and
Samimi-Abianeh
,
O.
,
2019
, “
Potentials of Porous Materials for Energy Management in Heat Exchangers—A Comprehensive Review
,”
Appl. Energy
,
243
, pp.
206
232
.10.1016/j.apenergy.2019.03.200
2.
Tan
,
W. C.
,
Saw
,
L. H.
,
Thiam
,
H. S.
,
Xuan
,
J.
,
Cai
,
Z.
, and
Yew
,
M. C.
,
2018
, “
Overview of Porous Media/Metal Foam Application in Fuel Cells and Solar Power Systems
,”
Renewable Sustainable Energy Rev.
,
96
, pp.
181
197
.10.1016/j.rser.2018.07.032
3.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
.10.1016/j.mechmat.2003.02.001
4.
Clyne
,
T.
,
Golosnoy
,
I.
,
Tan
,
J.
, and
Markaki
,
A.
,
2006
, “
Porous Materials for Thermal Management Under Extreme Conditions
,”
Philos. Trans. R. Soc., A
,
364
(
1838
), pp.
125
146
.10.1098/rsta.2005.1682
5.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T. Q.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Composites, Part B
,
143
, pp.
172
196
.10.1016/j.compositesb.2018.02.012
6.
Xu
,
H. J.
,
Xing
,
Z. B.
,
Wang
,
F. Q.
, and
Cheng
,
Z. M.
,
2019
, “
Review on Heat Conduction, Heat Convection, Thermal Radiation and Phase Change Heat Transfer of Nanofluids in Porous Media: Fundamentals and Applications
,”
Chem. Eng. Sci.
,
195
, pp.
462
483
.10.1016/j.ces.2018.09.045
7.
Mujeebu
,
M. A.
,
ABdullah
,
M. Z.
,
Bakar
,
M. Z. A.
,
Mohamad
,
A. A.
,
Muhad
,
R. M. N.
, and
Abdullah
,
M. K.
,
2009
, “
Combustion in Porous Media and Its Applications—A Comprehensive Survey
,”
J. Environ. Manage.
,
90
(
8
), pp.
2287
2312
.10.1016/j.jenvman.2008.10.009
8.
Jafari
,
D.
, and
Wits
,
W. W.
,
2018
, “
The Utilization of Selective Laser Melting Technology on Heat Transfer Devices for Thermal Energy Conversion Applications: A Review
,”
Renewable Sustainable Energy Rev.
,
91
, pp.
420
442
.10.1016/j.rser.2018.03.109
9.
Mohsenizadeh
,
M.
,
Gasbarri
,
F.
,
Munther
,
M.
,
Beheshti
,
A.
, and
Davami
,
K.
,
2018
, “
Additively-Manufactured Lightweight Metamaterials for Energy Absorption
,”
Mater. Des.
,
139
, pp.
521
530
.10.1016/j.matdes.2017.11.037
10.
Rashed
,
M. G.
,
AShraf
,
M.
,
Mines
,
R. A. W.
, and
Hazell
,
P. J.
,
2016
, “
Metallic Microlattice Materials: A Current State of the Art on Manufacturing, Mechanical Properties and Applications
,”
Mater. Des.
,
95
, pp.
518
533
.10.1016/j.matdes.2016.01.146
11.
Körner
,
C.
, and
Singer
,
R. F.
,
2000
, “
Processing of Metal Foams—Challenges and Opportunities
,”
Adv. Eng. Mater.
,
2
(
4
), pp.
159
165
.10.1002/(SICI)1527-2648(200004)2:4<159::AID-ADEM159>3.0.CO;2-O
12.
Banhart
,
J.
,
2006
, “
Metal Foams: Production and Stability
,”
Adv. Eng. Mater.
,
8
(
9
), pp.
781
794
.10.1002/adem.200600071
13.
Beavers
,
G. S.
, and
Sparrow
,
E. M.
,
1969
, “
Non-Darcy Flow Through Fibrous Porous Media
,”
ASME J. Appl. Mech.
,
36
(
4
), pp.
711
714
.10.1115/1.3564760
14.
Mancin
,
S.
,
Zilio
,
C.
,
Cavallini
,
A.
, and
Rossetto
,
L.
,
2010
, “
Pressure Drop During Air Flow in Aluminum Foams
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3121
3130
.10.1016/j.ijheatmasstransfer.2010.03.015
15.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
,
2000
, “
Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
572
578
.10.1115/1.1287170
16.
Hwang
,
J.-J.
,
Hwang
,
G.-J.
,
Yeh
,
R.-H.
, and
Chao
,
C.-H.
,
2002
, “
Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
120
129
.10.1115/1.1416690
17.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.10.1016/S0017-9310(01)00220-4
18.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2002
, “
The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
263
272
.10.1115/1.1429637
19.
Zhong
,
W.
,
Li
,
X.
,
Liu
,
F.
,
Tao
,
G.
,
Lu
,
B.
, and
Kagawa
,
T.
,
2014
, “
Measurement and Correlation of Pressure Drop Characteristics for Air Flow Through Sintered Metal Porous Media
,”
Transp. Porous Media
,
101
(
1
), pp.
53
67
.10.1007/s11242-013-0230-2
20.
Liu
,
J. F.
,
Wu
,
W. T.
,
Chiu
,
W. C.
, and
Hsieh
,
W. H.
,
2006
, “
Measurement and Correlation of Friction Characteristic of Flow Through Foam Matrixes
,”
Exp. Therm. Fluid Sci.
,
30
(
4
), pp.
329
336
.10.1016/j.expthermflusci.2005.07.007
21.
Ruiz
,
A.
,
Fezzaa
,
K.
,
Kapat
,
J.
, and
Bhattacharya
,
S.
,
2020
, “
Measurements of the Flow in the Vicinity of an Additively Manufactured Turbine Leading-Edge Using X-Ray Particle Tracking Velocimetry
,”
ASME J. Fluids Eng.
,
142
(
5
), p.
051502
.10.1115/1.4045496
22.
Saltzman
,
D.
, and
Lynch
,
S.
,
2021
, “
Flow-Field Measurements in a Metal Additively Manufactured Offset Strip Fin Array Using Laser Doppler Velocimetry
,”
ASME J. Fluids Eng.
,
143
(
4
), p.
041502
.10.1115/1.4049245
23.
Liu
,
H.
,
Yu
,
Q. N.
,
Qu
,
Z. G.
, and
Yang
,
R. Z.
,
2017
, “
Simulation and Analytical Validation of Forced Convection Inside Open-Cell Metal Foams
,”
Int. J. Therm. Sci.
,
111
, pp.
234
245
.10.1016/j.ijthermalsci.2016.09.006
24.
Bai
,
M.
, and
Chung
,
J. N.
,
2011
, “
Analytical and Numerical Prediction of Heat Transfer and Pressure Drop in Open-Cell Metal Foams
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
869
880
.10.1016/j.ijthermalsci.2011.01.007
25.
Iasiello
,
M.
,
Cunsolo
,
S.
,
Oliviero
,
M.
,
Harris
,
W. M.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2014
, “
Numerical Analysis of Heat Transfer and Pressure Drop in Metal Foams for Different Morphological Models
,”
ASME J. Heat Transfer
,
136
(
11
), p.
112601
.10.1115/1.4028113
26.
Diani
,
A.
,
Bodla
,
K. K.
,
Rossetto
,
L.
, and
Garimella
,
S. V.
,
2015
, “
Numerical Investigation of Pressure Drop and Heat Transfer Through Reconstructed Metal Foams and Comparison Against Experiments
,”
Int. J. Heat Mass Transfer
,
88
, pp.
508
515
.10.1016/j.ijheatmasstransfer.2015.04.038
27.
Trilok
,
G.
, and
Gnanasekaran
,
N.
,
2021
, “
Numerical Study on Maximizing Heat Transfer and Minimizing Flow Resistance Behavior of Metal Foams Owing to Their Structural Properties
,”
Int. J. Therm. Sci.
,
159
, p.
106617
.10.1016/J.IJTHERMALSCI.2020.106617
28.
Ambrosio
,
G.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
,
Iasiello
,
M.
,
Naso
,
V.
, and
Oliviero
,
M.
,
2016
, “
The Effect of Open-Cell Metal Foams Strut Shape on Convection Heat Transfer and Pressure Drop
,”
Appl. Therm. Eng.
,
103
, pp.
333
343
.10.1016/j.applthermaleng.2016.04.085
29.
Zafari
,
M.
,
Panjepour
,
M.
,
Emami
,
M. D.
, and
Meratian
,
M.
,
2015
, “
Microtomography-Based Numerical Simulation of Fluid Flow and Heat Transfer in Open Cell Metal Foams
,”
Appl. Therm. Eng.
,
80
, pp.
347
354
.10.1016/j.applthermaleng.2015.01.045
30.
Zhu
,
Q.
,
Pishahang
,
M.
,
Caccia
,
M.
,
Kelsall
,
C. C.
,
LaPotin
,
A.
,
Sandhage
,
K. H.
, and
Henry
,
A.
,
2022
, “
Validation of the Porous Medium Approximation for Hydrodynamics Analysis in Compact Heat Exchangers
,”
ASME J. Fluids Eng.
,
144
(
8
), p.
081403
.10.1115/1.4053898
31.
Perumal
,
D. A.
, and
Dass
,
A. K.
,
2015
, “
A Review on the Development of Lattice Boltzmann Computation of Macro Fluid Flows and Heat Transfer
,”
Alexandria Eng. J.
,
54
(
4
), pp.
955
971
.10.1016/j.aej.2015.07.015
32.
Guo
,
Z.
, and
Shu
,
C.
,
2013
,
Lattice Boltzmann Method and Its Applications in Engineering
, Vol.
3
,
World Scientific
, Hackensack, NJ.10.1142/8806
33.
Pan
,
C.
,
Luo
,
L. S.
, and
Miller
,
C. T.
,
2006
, “
An Evaluation of Lattice Boltzmann Schemes for Porous Medium Flow Simulation
,”
Comput. Fluids
,
35
(
8–9
), pp.
898
909
.10.1016/j.compfluid.2005.03.008
34.
Yang
,
P.
,
Wen
,
Z.
,
Dou
,
R.
, and
Liu
,
X. L.
,
2017
, “
Permeability in Multi-Sized Structures of Random Packed Porous Media Using Three-Dimensional Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
106
, pp.
1368
1375
.10.1016/j.ijheatmasstransfer.2016.10.124
35.
Chen
,
S.
,
You
,
Z.
,
Yang
,
S. L.
, and
Zhou
,
X.
,
2020
, “
Prediction of the Coefficient of Permeability of Asphalt Mixtures Using the Lattice Boltzmann Method
,”
Constr. Build. Mater.
,
240
, p.
117896
.10.1016/j.conbuildmat.2019.117896
36.
Eshghinejadfard
,
A.
,
Daróczy
,
L.
,
Janiga
,
G.
, and
Thévenin
,
D.
,
2016
, “
Calculation of the Permeability in Porous Media Using the Lattice Boltzmann Method
,”
Int. J. Heat Fluid Flow
,
62
, pp.
93
103
.10.1016/j.ijheatfluidflow.2016.05.010
37.
Takeuchi
,
Y.
,
Takeuchi
,
J.
,
Izumi
,
T.
, and
Fujihara
,
M.
,
2021
, “
Two-Dimensional Numerical Analysis of Non-Darcy Flow Using the Lattice Boltzmann Method: Pore-Scale Heterogeneous Effects
,”
ASME J. Fluids Eng.
,
143
(
6
), p.
061401
.10.1115/1.4049689
38.
Ekade
,
P.
, and
Krishnan
,
S.
,
2019
, “
Fluid Flow and Heat Transfer Characteristics of Octet Truss Lattice Geometry
,”
Int. J. Therm. Sci.
,
137
, pp.
253
261
.10.1016/j.ijthermalsci.2018.11.031
39.
Dixit
,
T.
,
Nithiarasu
,
P.
, and
Kumar
,
S.
,
2021
, “
Numerical Evaluation of Additively Manufactured Lattice Architectures for Heat Sink Applications
,”
Int. J. Therm. Sci.
,
159
, p.
106607
.10.1016/j.ijthermalsci.2020.106607
40.
Kaur
,
I.
, and
Singh
,
P.
,
2020
, “
Flow and Thermal Transport Through Unit Cell Topologies of Cubic and Octahedron Families
,”
Int. J. Heat Mass Transfer
,
158
, p.
119784
.10.1016/j.ijheatmasstransfer.2020.119784
41.
Chaudhari
,
A.
,
Ekade
,
P.
, and
Krishnan
,
S.
,
2019
, “
Experimental Investigation of Heat Transfer and Fluid Flow in Octet-Truss Lattice Geometry
,”
Int. J. Therm. Sci.
,
143
, pp.
64
75
.10.1016/j.ijthermalsci.2019.05.003
42.
Wang
,
N.
,
Kaur
,
I.
,
Singh
,
P.
, and
Li
,
L.
,
2021
, “
Prediction of Effective Thermal Conductivity of Porous Lattice Structures and Validation With Additively Manufactured Metal Foams
,”
Appl. Therm. Eng.
,
187
, p.
116558
.10.1016/j.applthermaleng.2021.116558
43.
Kumar
,
P.
, and
Topin
,
F.
,
2017
, “
State-of-the-Art of Pressure Drop in Open-Cell Porous Foams: Review of Experiments and Correlations
,”
ASME J. Fluids Eng.
,
139
(
11
), p.
111401
.10.1115/1.4037034
44.
Bai
,
X.
, and
Nakayama
,
A.
,
2019
, “
Quick Estimate of Effective Thermal Conductivity for Fluid-Saturated Metal Frame and Prismatic Cellular Structures
,”
Appl. Therm. Eng.
,
160
, p.
114011
.10.1016/j.applthermaleng.2019.114011
45.
Fu
,
X.
,
Viskanta
,
R.
, and
Gore
,
J. P.
,
1998
, “
Prediction of Effective Thermal Conductivity of Cellular Ceramics
,”
Int. Commun. Heat Mass Transfer
,
25
(
2
), pp.
151
160
.10.1016/S0735-1933(98)00002-5
46.
d'Humières
,
D.
,
2002
, “
Multiple–Relaxation–Time Lattice Boltzmann Models in Three Dimensions
,”
Philos. Trans. R. Soc., A
,
360
(
1792
), pp.
437
451
.10.1098/rsta.2001.0955
47.
Nield
,
D. A.
, and
Bejan
,
A.
,
2013
,
Convection in Porous Media
,
Springer
,
New York
.10.1007/978-1-4614-5541-7
48.
Sangani
,
A. S.
, and
Acrivos
,
A.
,
1982
, “
Slow Flow Through a Periodic Array of Spheres
,”
Int. J. Multiphase Flow
,
8
(
4
), pp.
343
360
.10.1016/0301-9322(82)90047-7
49.
Kouidri
,
A.
, and
Madani
,
B.
,
2016
, “
Experimental Hydrodynamic Study of Flow Through Metallic Foams: Flow Regime Transitions and Surface Roughness Influence
,”
Mech. Mater.
,
99
, pp.
79
87
.10.1016/j.mechmat.2016.05.007
50.
Xiao
,
T.
,
Guo
,
J.
,
Liu
,
G.
,
Yang
,
X.
, and
Lu
,
T. J.
,
2021
, “
An Analytical Fractal Model for Permeability in Isotropic Open-Cell Metal Foam With Surface Roughness
,”
Int. Commun. Heat Mass Transfer
,
126
, p.
105473
.10.1016/j.icheatmasstransfer.2021.105473
51.
Edouard
,
D.
,
Lacroix
,
M.
,
Huu
,
C. P.
, and
Luck
,
F.
,
2008
, “
Pressure Drop Modeling on SOLID Foam: State-of-the Art Correlation
,”
Chem. Eng. J.
,
144
(
2
), pp.
299
311
.10.1016/j.cej.2008.06.007
52.
Yang
,
H.
,
Li
,
Y.
,
Ma
,
B.
, and
Zhu
,
Y.
,
2021
, “
Review and a Theoretical Approach on Pressure Drop Correlations of Flow Through Open-Cell Metal Foam
,”
Materials
,
14
(
12
), p.
3153
.10.3390/ma14123153
53.
Tadrist
,
L.
,
Miscevic
,
M.
,
Rahli
,
O.
, and
Topin
,
F.
,
2004
, “
About the Use of Fibrous Materials in Compact Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
28
(
2–3
), pp.
193
199
.10.1016/S0894-1777(03)00039-6
54.
Ergun
,
S.
, and
Orning
,
A. A.
,
1949
, “
Fluid Flow Through Randomly Packed Columns and Fluidized Beds
,”
Ind. Eng. Chem.
,
41
(
6
), pp.
1179
1184
.10.1021/ie50474a011
55.
Carman
,
P. G.
,
1997
, “
Fluid Flow Through Granular Beds
,”
Chem. Eng. Res. Des.
,
75
(
Suppl. 1
), pp.
S32
S48
.10.1016/S0263-8762(97)80003-2
56.
Dukhan
,
N.
,
2006
, “
Correlations for the Pressure Drop for Flow Through Metal Foam
,”
Exp. Fluids
,
41
(
4
), pp.
665
672
.10.1007/s00348-006-0194-x
You do not currently have access to this content.