Abstract

Three different circular synthetic jet modeling inlet conditions are studied for a turbulent crossflow. The study examines the differences when modeling the whole synthetic jet actuators (SJA), neck-only or jet-slot-only under constant actuation frequency (f = 300 Hz), and crossflow blowing ratio (CB = 0.67). Phase-averaged and time-averaged results reveal that both whole SJA and neck-only methods generated nearly identical flow fields. For the neck-only case, a notable reduction in computational cost is achieved through the implementation of an analytical jet profile. The jet-slot-only method, on the other hand, introduces reversed flow during the ingestion cycle, leading to the injection of false-momentum into the crossflow. However, the false-momentum primarily affects the flow immediately downstream of the jet exit, with the boundary layer profile recovering rapidly. A parametric study highlights the importance of maintaining a volume ratio less than 1 of ingested to modeled neck volume to prevent the creation of false-momentum.

References

1.
Feero
,
M. A.
,
Goodfellow
,
S. D.
,
Lavoie
,
P.
, and
Sullivan
,
P. E.
,
2015
, “
Flow Reattachment Using Synthetic Jet Actuation on a Low-Reynolds-Number Airfoil
,”
AIAA J.
,
53
(
7
), pp.
2005
2014
.10.2514/1.J053605
2.
Zhang
,
S.
, and
Zhong
,
S.
,
2011
, “
Turbulent Flow Separation Control Over a Two-Dimensional Ramp Using Synthetic Jets
,”
AIAA J.
,
49
(
12
), pp.
2637
2649
.10.2514/1.J051046
3.
Yen
,
J.
, and
Ahmed
,
N. A.
,
2012
, “
Parametric Study of Dynamic Stall Flow Field With Synthetic Jet Actuation
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071106
.10.1115/1.4006957
4.
Tadjfar
,
M.
, and
Kamari
,
D.
,
2020
, “
Optimization of Flow Control Parameters Over SD7003 Airfoil With Synthetic Jet Actuator
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021206
.10.1115/1.4044985
5.
Zhang
,
B.
,
Liu
,
H.
,
Li
,
Y.
,
Liu
,
H.
, and
Dong
,
J.
,
2021
, “
Experimental Study of Coaxial Jets Mixing Enhancement Using Synthetic Jets
,”
Appl. Sci.
,
11
(
2
), pp.
1
13
.10.3390/app11020803
6.
He
,
W.
,
Luo
,
Z. B.
,
Deng
,
X.
,
Peng
,
C.
,
Liu
,
Q.
,
Gao
,
T. X.
,
Cheng
,
P.
,
Zhou
,
Y.
, and
Peng
,
W. Q.
,
2023
, “
Numerical Study on the Atomization Mechanism and Energy Characteristics of Synthetic Jet/Dual Synthetic Jets
,”
Appl. Energy
,
346
, p.
121376
.10.1016/j.apenergy.2023.121376
7.
Huang
,
W.
,
Du
,
Z. B.
,
Yan
,
L.
, and
Xia
,
Z. X.
,
2019
, “
Supersonic Mixing in Airbreathing Propulsion Systems for Hypersonic Flights
,”
Prog. Aerosp. Sci.
,
109
, p.
100545
.10.1016/j.paerosci.2019.05.005
8.
Huang
,
W.
,
2016
, “
Transverse Jet in Supersonic Crossflows
,”
Aerosp. Sci. Technol.
,
50
, pp.
183
195
.10.1016/j.ast.2016.01.001
9.
Huang
,
W.
, and
Yan
,
L.
,
2013
, “
Progress in Research on Mixing Techniques for Transverse Injection Flow Fields in Supersonic Crossflows
,”
J. Zhejiang Univ. Sci. A
,
14
(
8
), pp.
554
564
.10.1631/jzus.A1300096
10.
Kobayashi
,
R.
,
Nishibe
,
K.
,
Watabe
,
Y.
,
Sato
,
K.
, and
Yokota
,
K.
,
2018
, “
Vector Control of Synthetic Jets Using an Asymmetric Slot
,”
ASME J. Fluids Eng.
,
140
(
5
), p.
051102
.10.1115/1.4038660
11.
Kang
,
Y.
,
Luo
,
Z. B.
,
Deng
,
X.
,
Cheng
,
P.
,
Peng
,
C.
,
He
,
W.
, and
Xia
,
Z. X.
,
2023
, “
Numerical Study of a Liquid Cooling Device Based on Dual Synthetic Jets Actuator
,”
Appl. Therm. Eng.
,
219
, p.
119691
.10.1016/j.applthermaleng.2022.119691
12.
Gil
,
P.
,
2023
, “
Flow and Heat Transfer Characteristics of Single and Multiple Synthetic Jets Impingement Cooling
,”
Int. J. Heat Mass Transfer
,
201
, p.
123590
.10.1016/j.ijheatmasstransfer.2022.123590
13.
Deng
,
X.
,
Dong
,
Z.
,
Liu
,
Q.
,
Peng
,
C.
,
He
,
W.
, and
Luo
,
Z.
,
2022
, “
Dual Synthetic Jets Actuator and Its Applications—Part III: Impingement Flow Field and Cooling Characteristics of Vectoring Dual Synthetic Jets
,”
Actuators
,
11
(
12
), p.
376
.10.3390/act11120376
14.
Singh
,
P. K.
,
Renganathan
,
M.
,
Yadav
,
H.
,
Sahu
,
S. K.
,
Upadhyay
,
P. K.
, and
Agrawal
,
A.
,
2022
, “
An Experimental Investigation of the Flow-Field and Thermal Characteristics of Synthetic Jet Impingement With Different Waveforms
,”
Int. J. Heat Mass Transfer
,
187
, p.
122534
.10.1016/j.ijheatmasstransfer.2022.122534
15.
Choubey
,
G.
,
Yuvarajan
,
D.
,
Huang
,
W.
,
Shafee
,
A.
, and
Pandey
,
K. M.
,
2020
, “
Recent Research Progress on Transverse Injection Technique for Scramjet Applications-a Brief Review
,”
Int. J. Hydrogen Energy
,
45
(
51
), pp.
27806
27827
.10.1016/j.ijhydene.2020.07.098
16.
Azzawi
,
I. D. J.
,
Jaworski
,
A. J.
, and
Mao
,
X.
,
2021
, “
An Overview of Synthetic Jet Under Different Clamping and Amplitude Modulation Techniques
,”
ASME J. Fluids Eng.
,
143
(
3
), p.
031501
.10.1115/1.4048930
17.
Ziadé
,
P.
,
Feero
,
M. A.
, and
Sullivan
,
P. E.
,
2018
, “
A Numerical Study on the Influence of Cavity Shape on Synthetic Jet Performance
,”
Int. J. Heat Fluid Flow
,
74
, pp.
187
197
.10.1016/j.ijheatfluidflow.2018.10.001
18.
Montazer
,
E.
,
Mirzaei
,
M.
,
Salami
,
E.
,
Ward
,
T. A.
,
Romli
,
F. I.
, and
Kazi
,
S. N.
,
2016
, “
Optimization of a Synthetic Jet Actuator for Flow Control Around an Airfoil
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
152
(
1
), p.
012023
.10.1088/1757-899X/152/1/012023
19.
Feero
,
M. A.
,
Lavoie
,
P.
, and
Sullivan
,
P. E.
,
2015
, “
Influence of Cavity Shape on Synthetic Jet Performance
,”
Sens. Actuators, A Phys.
,
223
, pp.
1
10
.10.1016/j.sna.2014.12.004
20.
Jabbal
,
M.
,
Wu
,
J.
, and
Zhong
,
S.
,
2006
, “
The Performance of Round Synthetic Jets in Quiescent Flow
,”
Aeronaut. J.
,
110
(
1108
), pp.
385
393
.10.1017/S0001924000001305
21.
Albright
,
S. O.
, and
Solovitz
,
S. A.
,
2016
, “
Examination of a Variable-Diameter Synthetic Jet
,”
ASME J. Fluids Eng.
,
138
(
12
), p.
121103
.10.1115/1.4033912
22.
Wang
,
L.
, and
Feng
,
L. H.
,
2020
, “
The Interactions of Rectangular Synthetic Jets With a Laminar Cross-Flow
,”
J. Fluid Mech.
,
899
, p. A32.10.1017/jfm.2020.430
23.
Jankee
,
G. K.
, and
Ganapathisubramani
,
B.
,
2021
, “
Scalings for Rectangular Synthetic Jet Trajectory in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
915
, p. A57.10.1017/jfm.2020.1142
24.
Wen
,
X.
, and
Tang
,
H.
,
2017
, “
Dye Visualization of in-Line Twin Synthetic Jets in Crossflows - A Parametric Study
,”
ASME J. Fluids Eng.
,
139
(
9
), p.
091203
.10.1115/1.4036410
25.
Salunkhe
,
P.
,
Wu
,
Y.
, and
Tang
,
H.
,
2020
, “
Aerodynamic Performance Improvement of a Wing Model Using an Array of Slotted Synthetic Jets
,”
ASME J. Fluids Eng.
,
142
(
10
), p.
101204
.10.1115/1.4047397
26.
Jabbal
,
M.
, and
Zhong
,
S.
,
2010
, “
Particle Image Velocimetry Measurements of the Interaction of Synthetic Jets With a Zero-Pressure Gradient Laminar Boundary Layer
,”
Phys. Fluids
,
22
(
6
), pp.
1
17
.10.1063/1.3432133
27.
Ho
,
H. H.
,
Essel
,
E. E.
, and
Sullivan
,
P. E.
,
2022
, “
The Interactions of a Circular Synthetic Jet With a Turbulent Crossflow
,”
Phys. Fluids
,
34
(
7
), p.
75108
.10.1063/5.0099533
28.
Chapin
,
V. G.
, and
Benard
,
E.
,
2015
, “
Active Control of a Stalled Airfoil Through Steady or Unsteady Actuation Jets
,”
ASME J. Fluids Eng.
,
137
(
9
), p.
091103
.10.1115/1.4030483
29.
Matiz-Chicacausa
,
A.
,
Molano
,
S.
, and
Lopez
,
O. D.
,
2023
, “
Flow Control With Synthetic Jets on a Wind Turbine Airfoil
,”
AIAA AVIATION 2023 Forum, p. 3526.
30.
Tousi
,
N. M.
,
Bergadà
,
J. M.
, and
Mellibovsky
,
F.
,
2022
, “
Large Eddy Simulation of Optimal Synthetic Jet Actuation on a SD7003 Airfoil in Post-Stall Conditions
,”
Aerosp. Sci. Technol.
,
127
, p.
107679
.10.1016/j.ast.2022.107679
31.
Guoqiang
,
L.
, and
Shihe
,
Y.
,
2020
, “
Large Eddy Simulation of Dynamic Stall Flow Control for Wind Turbine Airfoil Using Plasma Actuator
,”
Energy
,
212
, p.
118753
.10.1016/j.energy.2020.118753
32.
Pasa
,
J.
,
Panda
,
S.
, and
Arumuru
,
V.
,
2023
, “
Focusing of Jet From Synthetic Jet Array Using Non-Linear Phase Delay
,”
Phys. Fluids
,
35
(
5
), p.
055141
.10.1063/5.0148794
33.
Panda
,
S.
,
Gohil
,
T. B.
, and
Arumuru
,
V.
,
2022
, “
Influence of Mass Flux Ratio on the Evolution of Coaxial Synthetic Jet
,”
Phys. Fluids
,
34
(
9
), p.
093601
.10.1063/5.0101727
34.
Palumbo
,
A.
,
Semeraro
,
O.
,
Robinet
,
J. C.
, and
De Luca
,
L.
,
2022
, “
Boundary Layer Transition Induced by Low-Speed Synthetic Jets
,”
Phys. Fluids
,
34
(
12
), p.
124113
.10.1063/5.0128798
35.
Wang
,
Y. Z.
,
Mei
,
Y. F.
,
Aubry
,
N.
,
Chen
,
Z.
,
Wu
,
P.
, and
Wu
,
W. T.
,
2022
, “
Deep Reinforcement Learning Based Synthetic Jet Control on Disturbed Flow Over Airfoil
,”
Phys. Fluids
,
34
(
3
), p.
033606
.10.1063/5.0080922
36.
Bai
,
H.
,
Wang
,
F.
,
Zhang
,
S.
,
Zhang
,
W.
, and
Lin
,
Y.
,
2023
, “
Square Cylinder Flow Controlled by a Synthetic Jet at One Leading Edge
,”
Phys. Fluids
,
35
(
3
), p.
035137
.10.1063/5.0139705
37.
Kral
,
L. D.
,
Donovan
,
J. F.
,
Cain
,
A. B.
, and
Cary
,
A. W.
,
1997
, “
Numerical Simulation of Synthetic Jet Actuators
,”
4th Shear Flow Control Conference
, Snowmass Village, June 19–July 2, p.
1824
.
38.
Belanger
,
R.
,
Zingg
,
D. W.
, and
Lavoie
,
P.
,
2020
, “
Vortex Structure of a Synthetic Jet Issuing Into a Turbulent Boundary Layer From a Finite-Span Rectangular Orifice
,”
AIAA Scitech 2020 Forum, p. 1815
.
39.
Ciobaca
,
V.
,
Rudnik
,
R.
,
Haucke
,
F.
, and
Nitsche
,
W.
,
2013
, “
Active Flow Control on a High-Lift Airfoil: URANS Simulations and Comparison With Time-Accurate Measurements
,” 31st
AIAA Applied Aerodynamics Conference, San Diego, USA, June 24–27, p. 2795.
40.
Asgari
,
E.
, and
Tadjfar
,
M.
,
2022
, “
Role of Phase-Difference Between Two Adjacent Rectangular Synthetic Jet Actuators in Active Control of Flow Over a Rounded Ramp
,”
Phys. Fluids
,
34
(
2
), p.
025101
.10.1063/5.0077401
41.
Kotapati
,
R. B.
,
Mittal
,
R.
, and
Cattafesta
,
L. N.
,
2007
, “
Numerical Study of a Transitional Synthetic Jet in Quiescent External Flow
,”
J. Fluid Mech.
,
581
, pp.
287
321
.
42.
Yao
,
C.
,
Chen
,
F. J.
, and
Neuhart
,
D.
,
2006
, “
Synthetic Jet Flowfield Database for Computational Fluid Dynamics Validation
,”
AIAA J.
,
44
(
12
), pp.
3153
3157
.10.2514/1.13819
43.
Coskun
,
U. C.
,
Cadirci
,
S.
, and
Gunes
,
H.
,
2021
, “
Numerical Investigation of Active Flow Control on Laminar Forced Convection Over a Backward Facing Step Surrounded by Multiple Jets
,”
J. Appl. Fluid Mech.
,
14
(
2
), pp.
447
458
.10.47176/jafm.14.02.31680
44.
Raju
,
R.
,
Aram
,
E.
,
Mittal
,
R.
, and
Cattafesta
,
L.
,
2009
, “
Simple Models of Zero-Net Mass-Flux Jets for Flow Control Simulations
,”
Int. J. Flow Control
,
1
(
3
), pp.
179
197
.10.1260/175682509789877092
45.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
46.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
,
4
(
7
), pp.
1510
1520
.10.1063/1.858424
47.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
137
.10.1016/0094-4548(74)90150-7
48.
Ou
,
M.
,
Yan
,
L.
,
Huang
,
W.
,
Li
,
S. B.
, and
Li
,
L. Q.
,
2018
, “
Detailed Parametric Investigations on Drag and Heat Flux Reduction Induced by a Combinational Spike and Opposing Jet Concept in Hypersonic Flows
,”
Int. J. Heat Mass Transfer
,
126
, pp.
10
31
.10.1016/j.ijheatmasstransfer.2018.05.013
49.
Jasak
,
H.
,
2009
, “
OpenFOAM: Open Source CFD in Research and Industry
,”
Int. J. Nav. Archit. Ocean Eng.
,
1
(
2
), pp.
89
94
.10.2478/IJNAOE-2013-0011
50.
Feero
,
M. A.
,
Lavoie
,
P.
, and
Sullivan
,
P. E.
,
2017
, “
Influence of Synthetic Jet Location on Active Control of an Airfoil at Low Reynolds Number
,”
Exp. Fluids
,
58
(
8
), p.
99
.10.1007/s00348-017-2387-x
51.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
52.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Center for Turbulence Research Report CTR-S88
, pp.
193
208
.
53.
New
,
T. H.
,
Lim
,
T. T.
, and
Luo
,
S. C.
,
2006
, “
Effects of Jet Velocity Profiles on a Round Jet in Cross-Flow
,”
Exp. Fluids
,
40
(
6
), pp.
859
875
.10.1007/s00348-006-0124-y
54.
Zhong
,
S.
,
Garcillan
,
L.
, and
Wood
,
N. J.
,
2005
, “
Dye Visualisation of Inclined and Skewed Synthetic Jets in a Cross Flow
,”
Aeronaut. J.
,
109
(
1093
), pp.
147
155
.10.1017/S0001924000000658
55.
Sabatino
,
D. R.
, and
Maharjan
,
R.
,
2015
, “
Characterizing the Formation and Regeneration of Hairpin Vortices in a Laminar Boundary Layer
,”
Phys. Fluids
,
27
(
12
), p.
124104
.10.1063/1.4936138
56.
Xu
,
K.
,
Lavoie
,
P.
, and
Sullivan
,
P.
,
2023
, “
Flow Reattachment on a NACA 0025 Airfoil Using an Array of Microblowers
,”
AIAA J.
,
61
(
6
), pp.
2476
2485
.10.2514/1.J062512
57.
Greenblatt
,
D.
,
Paschal
,
K. B.
,
Yao
,
C. S.
, and
Harris
,
J.
,
2006
, “
Experimental Investigation of Separation Control Part 2: Zero Mass-Flux Oscillatory Blowing
,”
AIAA J.
,
44
(
12
), pp.
2831
2845
.10.2514/1.19324
You do not currently have access to this content.