Abstract

The baseline Launder–Spalding kε model cannot be integrated to the wall. This paper seeks to incorporate the entire law of the wall into the model while preserving the original kε framework structure. Our approach involves modifying the unclosed dissipation terms in the k and ε equations specifically within the wall layer according to direct numerical simulation (DNS) data. The resulting model effectively captures the mean flow characteristics in both the buffer layer and the logarithmic layer, resulting in robust predictions of skin friction for zero-pressure-gradient (ZPG) flat-plate boundary layers and plane channels. To further validate our formulation, we apply our model to boundary layers under varying pressure gradients, channels experiencing sudden deceleration, and flow over periodic hills, with highly favorable results. Although not the focus of this study, the methodology here applies equally to the k–ω formulation and yields improved predictions of the mean flow in the viscous sublayer and buffer layer.

References

1.
Moin
,
P.
, and
Mahesh
,
K.
,
1998
, “
Direct Numerical Simulation: A Tool in Turbulence Research
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
539
578
.10.1146/annurev.fluid.30.1.539
2.
Choi
,
H.
, and
Moin
,
P.
,
2012
, “
Grid-Point Requirements for Large Eddy Simulation: Chapman's Estimates Revisited
,”
Phys. Fluids
,
24
(
1
), p.
011702
.10.1063/1.3676783
3.
Yang
,
X. I. A.
, and
Griffin
,
K. P.
,
2021
, “
Grid-Point and Time-Step Requirements for Direct Numerical Simulation and Large-Eddy Simulation
,”
Phys. Fluids
,
33
(
1
), p.
015108
.10.1063/5.0036515
4.
Li
,
J.
,
Yang
,
X. I. A.
, and
Kunz
,
R. F.
,
2022
, “
Grid-Point and Time-Step Requirements for Large-Eddy Simulation and Reynolds-Averaged Navier–Stokes of Stratified Wakes
,”
Phys. Fluids
,
34
(
11
), p.
115125
.10.1063/5.0127487
5.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 92-439.10.2514/6.92-439
6.
Elkhoury
,
M.
,
2007
, “
Assessment and Modification of One-Equation Models of Turbulence for Wall-Bounded Flows
,”
ASME J. Fluids Eng.
,
129
(
7
), pp.
921
928
.10.1115/1.2743666
7.
Rodi
,
W.
,
Mansour
,
N. N.
, and
Michelassi
,
V.
,
1993
, “
One-Equation Near-Wall Turbulence Modeling With the Aid of Direct Simulation Data
,”
ASME J. Fluids Eng.
,
115
(
2
), pp.
196
205
.10.1115/1.2910124
8.
Wilcox
,
D. C.
,
2008
, “
Formulation of the k–ω Turbulence Model Revisited
,”
AIAA J.
,
46
(
11
), pp.
2823
2838
.10.2514/1.36541
9.
Chien
,
K.-Y.
,
1982
, “
Predictions of Channel and Boundary-Layer Flows With a Low-Reynolds-Number Turbulence Model
,”
AIAA J.
,
20
(
1
), pp.
33
38
.10.2514/3.51043
10.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
11.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
12.
Aupoix
,
B.
,
2015
, “
Roughness Corrections for the k–ω Shear Stress Transport Model: Status and Proposals
,”
ASME J. Fluids Eng.
,
137
(
2
), p.
021202
.10.1115/1.4028122
13.
Menter
,
F. R.
,
1997
, “
Eddy Viscosity Transport Equations and Their Relation to the k-ε Model
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
876
884
.10.1115/1.2819511
14.
Eisfeld
,
B.
,
Rumsey
,
C.
, and
Togiti
,
V.
,
2016
, “
Verification and Validation of a Second-Moment-Closure Model
,”
AIAA J.
,
54
(
5
), pp.
1524
1541
.10.2514/1.J054718
15.
Cecora
,
R. D.
,
Radespiel
,
R.
,
Eisfeld
,
B.
, and
Probst
,
A.
,
2015
, “
Differential Reynolds Stress Modeling for Aeronautics
,”
AIAA J.
,
53
(
3
), pp.
739
755
.10.2514/1.J053250
16.
Jain
,
N.
,
Huang
,
X. L. D.
,
Li
,
J. J. L.
,
Yang
,
X. I. A.
, and
Kunz
,
R. F.
,
2023
, “
An Assessment of Second Moment Closure Modeling for Stratified Wakes Using Direct Numerical Simulations Ensembles
,”
ASME J. Fluids Eng.
,
145
(
9
), p.
091502
.10.1115/1.4062590
17.
Chou
,
P. Y.
,
1945
, “
On the Velocity Correlations and the Solution of the Equations of Turbulent Fluctuation
,”
Q. Appl. Math.
,
3
(
1
), pp.
38
54
.10.1090/qam/11999
18.
Davidov
,
B. I.
,
1961
, “
On the Statistical Dynamics of an Incompressible Fluid
,”
Dokl. Akad. Nauk SSSR
,
136
(
1
), pp.
47
50
.https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=24463&option_lang=eng
19.
Harlow
,
F. H.
, and
Nakayama
,
P. I.
,
1968
, “
Transport of Turbulence Energy Decay Rate
,” Los Alamos Scientific Laboratory, University of California, Los Alamos, NM, Report No.
LA-3854
.10.2172/4556905
20.
Jones
,
W.
, and
Launder
,
B.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.10.1016/0017-9310(72)90076-2
21.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New kε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
22.
Yakhot
,
V.
,
Orszag
,
S.
,
Thangam
,
S.
,
Gatski
,
T.
, and
Speziale
,
C.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids
,
4
(
7
), pp.
1510
1520
.10.1063/1.858424
23.
Craft
,
T. J.
,
Gant
,
S. E.
,
Iacovides
,
H.
, and
Launder
,
B. E.
,
2004
, “
A New Wall Function Strategy for Complex Turbulent Flows
,”
Numer. Heat Transfer, Part B: Fundam.
,
45
(
4
), pp.
301
318
.10.1080/10407790490277931
24.
Holgate
,
J.
,
Skillen
,
A.
,
Craft
,
T.
, and
Revell
,
A.
,
2019
, “
A Review of Embedded Large Eddy Simulation for Internal Flows
,”
Arch. Comput. Methods Eng.
,
26
(
4
), pp.
865
882
.10.1007/s11831-018-9272-5
25.
Launder
,
B.
, and
Sharma
,
B.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
137
.10.1016/0094-4548(74)90150-7
26.
Nagano
,
Y.
, and
Tagawa
,
M.
,
1990
, “
An Improved k-ε Model for Boundary Layer Flows
,”
ASME J. Fluids Eng.
,
112
(
1
), pp.
33
39
.10.1115/1.2909365
27.
Nagano
,
Y.
, and
Hishida
,
M.
,
1987
, “
Improved Form of the kε Model for Wall Turbulent Shear Flows
,”
ASME J. Fluids Eng.
,
109
(
2
), pp.
156
160
.10.1115/1.3242636
28.
Goldberg
,
U.
,
Peroomian
,
O.
, and
Chakravarthy
,
S.
,
1998
, “
A Wall-Distance-Free kε Model With Enhanced Near-Wall Treatment
,”
ASME J. Fluids Eng.
,
120
(
3
), pp.
457
462
.10.1115/1.2820684
29.
Kolmogorov
,
A. N.
,
1942
, “
Equations of Turbulent Motion of an Incompressible Fluid
,”
Proc. USSR Acad. Sci.
, 30, pp.
299
303
.https://www.semanticscholar.org/paper/Equations-of-turbulent-motion-in-anincompressible-Kolmogorov/990bd16cb8a65404276ad3b9b9f3489efadf3dbb
30.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Mathematical Models of Turbulence
,
Academic Press
,
London
.
31.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.10.2514/3.10041
32.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, Vol. 2,
DCW Industries
,
La Canada, CA
.
33.
Hellsten
,
A.
,
2005
, “
New Advanced kω Turbulence Model for High-Lift Aerodynamics
,”
AIAA J.
,
43
(
9
), pp.
1857
1869
.10.2514/1.13754
34.
Wallin
,
S.
, and
Johansson
,
A. V.
,
2000
, “
An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows
,”
J. Fluid Mech.
,
403
, pp.
89
132
.10.1017/S0022112099007004
35.
Spalart
,
P.
,
2023
, “
An Old-Fashioned Framework for Machine Learning in Turbulence Modeling
,” preprint arXiv:2308.00837, pp.
1
27
.
36.
Lee
,
M.
, and
Moser
,
R. D.
,
2015
, “Direct Numerical Simulation of Turbulent Channel Flow Up to Reτ=5200,”
J. Fluid Mech.
,
774
, pp.
395
415
.10.1017/jfm.2015.268
37.
Schlatter
,
P.
, and
Orlu
,
R.
,
2010
, “
Assessment of Direct Numerical Simulation Data of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
659
, pp.
116
126
.10.1017/S0022112010003113
38.
Eitel-Amor
,
G.
,
Örlü
,
R.
, and
Schlatter
,
P.
,
2014
, “Simulation and Validation of a Spatially Evolving Turbulent Boundary Layers Up to Reθ=8300,”
Int. J. Heat Fluid Flow
,
47
, pp.
57
69
.10.1016/j.ijheatfluidflow.2014.02.006
39.
Wu
,
X.
, and
Moin
,
P.
,
2008
, “
A Direct Numerical Simulation Study on the Mean Velocity Characteristics in Turbulent Pipe Flow
,”
J. Fluid Mech.
,
608
, pp.
81
112
.10.1017/S0022112008002085
40.
Durbin
,
P. A.
,
2018
, “
Some Recent Developments in Turbulence Closure Modeling
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
77
103
.10.1146/annurev-fluid-122316-045020
41.
Duraisamy
,
K.
,
Iaccarino
,
G.
, and
Xiao
,
H.
,
2019
, “
Turbulence Modeling in the Age of Data
,”
Annu. Rev. Fluid Mech.
,
51
(
1
), pp.
357
377
.10.1146/annurev-fluid-010518-040547
42.
Duraisamy
,
K.
,
2021
, “
Perspectives on Machine Learning-Augmented Reynolds-Averaged and Large Eddy Simulation Models of Turbulence
,”
Phys. Rev. Fluids
,
6
(
5
), p.
050504
.10.1103/PhysRevFluids.6.050504
43.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
,
2020
, “
Machine Learning for Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
477
508
.10.1146/annurev-fluid-010719-060214
44.
Rumsey
,
C. L.
,
Coleman
,
G. N.
, and
Wang
,
L.
,
2022
, “
In Search of Data-Driven Improvements to RANS Models Applied to Separated Flows
,”
AIAA
Paper No. 2022-0937.10.2514/6.2022-0937
45.
Kou
,
J.
, and
Zhang
,
W.
,
2021
, “
Data-Driven Modeling for Unsteady Aerodynamics and Aeroelasticity
,”
Prog. Aerosp. Sci.
,
125
, p.
100725
.10.1016/j.paerosci.2021.100725
46.
Zhu
,
L.
,
Zhang
,
W.
,
Kou
,
J.
, and
Liu
,
Y.
,
2019
, “
Machine Learning Methods for Turbulence Modeling in Subsonic Flows Around Airfoils
,”
Phys. Fluids
,
31
(
1
), p.
015105
.10.1063/1.5061693
47.
Wang
,
Z.
, and
Zhang
,
W.
,
2023
, “
A Unified Method of Data Assimilation and Turbulence Modeling for Separated Flows at High Reynolds Numbers
,”
Phys. Fluids
,
35
(
2
), p.
025124
.10.1063/5.0136420
48.
Bin
,
Y.
,
Hu
,
X.
,
Li
,
J.
,
Grauer
,
S.
, and
Yang
,
X. I. A.
,
2024
, “
Constrained Re-Calibration of Two-Equation Reynolds-Averaged Navier–Stokes Models
,”
Theor. Appl. Mech. Lett.
,
14
(
2
), p.
100503
.10.1016/j.taml.2024.100503
49.
Parish
,
E. J.
, and
Duraisamy
,
K.
,
2016
, “
A Paradigm for Data-Driven Predictive Modeling Using Field Inversion and Machine Learning
,”
J. Comput. Phys.
,
305
, pp.
758
774
.10.1016/j.jcp.2015.11.012
50.
Wu
,
C.
, and
Zhang
,
Y.
,
2024
, “
Development of a Generalizable Data-Driven Turbulence Model: Conditioned Field Inversion and Symbolic Regression
,” preprint arXiv:2402.16355, pp.
1
45
.
51.
Bin
,
Y.
,
Chen
,
L.
,
Huang
,
G.
, and
Yang
,
X. I. A.
,
2022
, “
Progressive, Extrapolative Machine Learning for Near-Wall Turbulence Modeling
,”
Phys. Rev. Fluids
,
7
(
8
), p.
084610
.10.1103/PhysRevFluids.7.084610
52.
Bin
,
Y.
,
Huang
,
G.
,
Kunz
,
R.
, and
Yang
,
X. I. A.
,
2024
, “
Constrained Re-Calibration of Reynolds-Averaged Navier–Stokes Models
,”
AIAA J.
,
62
(
4
), pp.
1434
1446
.10.2514/1.J063407
53.
Bin
,
Y.
,
Huang
,
G.
, and
Yang
,
X. I. A.
,
2023
, “
A Data-Enabled Re-Calibration of the Spalart-Allmaras Model for General Purposes
,”
AIAA J.
,
61
(
11
), pp.
4852
4863
.10.2514/1.J062870
54.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, New York.
55.
Spalart
,
P.
,
2024
, “
The Conjecture of a General Law of the Wall for Classical Turbulence Models, Implying a Structural Limitation
,”
Flow, Turbul. Combust.
,
112
(
2
), pp.
443
457
.10.1007/s10494-023-00511-5
56.
Suzen
,
Y. B.
,
Huang
,
P.
,
Hultgren
,
L. S.
, and
Ashpis
,
D. E.
,
2003
, “
Predictions of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation
,”
ASME J. Turbomach.
,
125
(
3
), pp.
455
464
.10.1115/1.1580159
57.
Suzen
,
Y. B.
, and
Huang
,
P. G.
,
2004
, “
Comprehensive Validation of an Intermittency Transport Model for Transitional Low-Pressure Turbine Flows
,”
AIAA
Paper No. 2004-1121.10.2514/6.2004-1121
58.
Viti
,
V.
,
Huang
,
G.
, and
Bradshaw
,
P.
,
2007
, “
Numerical Study of Stress-Transport Turbulence Models: Implementation and Validation Issues
,”
Comput. Fluids
,
36
(
8
), pp.
1373
1383
.10.1016/j.compfluid.2006.11.006
59.
Huang
,
P. G.
, and
Coakley
,
T. J.
,
1992
, “
An Implicit Navier-Stokes Code for Turbulent Flow Modeling
,”
AIAA
Paper No. 92-547.10.2514/6.92-547
60.
Volino
,
R.
,
2020
, “
Non-Equilibrium Development in Turbulent Boundary Layers With Changing Pressure Gradients
,”
J. Fluid Mech.
,
897
, p.
A2
.10.1017/jfm.2020.319
61.
Chen
,
P.
,
Wu
,
W.
,
Griffin
,
K.
,
Shi
,
Y.
, and
Yang
,
X.
,
2023
, “
A Universal Velocity Transformation for Boundary Layers With Pressure Gradients
,”
J. Fluid Mech.
,
970
, p.
A3
.10.1017/jfm.2023.570
62.
Bradbury
,
L.
, and
Riley
,
J.
,
1967
, “
The Spread of a Turbulent Plane Jet Issuing Into a Parallel Moving Airstream
,”
J. Fluid Mech.
,
27
(
2
), pp.
381
394
.10.1017/S0022112067000400
63.
Graham
,
J.
,
Kanov
,
K.
,
Yang
,
X. I. A.
,
Lee
,
M.
,
Malaya
,
N.
,
Lalescu
,
C. C.
,
Burns
,
R.
,
Eyink
,
G.
,
Szalay
,
A.
,
Moser
,
R. D.
, and
Meneveau
,
C.
,
2016
, “
A Web Services Accessible Database of Turbulent Channel Flow and Its Use for Testing a New Integral Wall Model for LES
,”
J. Turbul.
,
17
(
2
), pp.
181
215
.10.1080/14685248.2015.1088656
64.
Chen
,
P.
,
Zhu
,
X.
,
Shi
,
Y.
, and
Yang
,
X.
,
2023
, “
Quantifying Uncertainties in Direct-Numerical-Simulation Statistics Due to Wall-Normal Numerics and Grids
,”
Phys. Rev. Fluids
,
8
(
7
), p.
074602
.10.1103/PhysRevFluids.8.074602
65.
Oberlack
,
M.
,
Hoyas
,
S.
,
Kraheberger
,
S. V.
,
Alcántara-Ávila
,
F.
, and
Laux
,
J.
,
2022
, “
Turbulence Statistics of Arbitrary Moments of Wall-Bounded Shear Flows: A Symmetry Approach
,”
Phys. Rev. Lett.
,
128
(
2
), p.
024502
.10.1103/PhysRevLett.128.024502
66.
Hoyas
,
S.
,
Oberlack
,
M.
,
Alcántara-Ávila
,
F.
,
Kraheberger
,
S. V.
, and
Laux
,
J.
,
2022
, “
Wall Turbulence at High Friction Reynolds Numbers
,”
Phys. Rev. Fluids
,
7
(
1
), p.
014602
.10.1103/PhysRevFluids.7.014602
67.
Von Karman
,
T.
,
1934
, “
Turbulence and Skin Friction
,”
J. Astronaut. Sci.
,
1
(
1
), pp.
1
20
.10.2514/8.5
68.
Balakumar
,
P.
, and
Park
,
G. I.
,
2015
, “
DNS/LES Simulations of Separated Flows at High Reynolds Numbers
,”
AIAA
Paper No. 2015-2783.10.2514/6.2015-2783
69.
Xiao
,
H.
, and
Jenny
,
P.
,
2012
, “
A Consistent Dual-Mesh Framework for Hybrid LES/RANS Modeling
,”
J. Comput. Phys.
,
231
(
4
), pp.
1848
1865
.10.1016/j.jcp.2011.11.009
You do not currently have access to this content.