Abstract

Advancements in wind turbine technology are critical for the global renewable energy landscape. The continuous growth of wind turbine capacities has presented various challenges for flow and power control strategies. New smart systems are mandatory to monitor and control loads and power effectively to guarantee optimal operation in current wind generation systems. While several methods have been proposed, experimental validation remains challenging due to operation costs, size, and time required to fabricate a fully scaled wind turbine prototype. Concerning this, the implementation of reduced-scaled wind turbine test benches offers an alternative to validate new flow control strategies for optimizing the efficiency of wind turbines. This paper presents the design and implementation of a wind turbine test bench for active flow control systems in small-scale wind turbines. The system includes a multidegree mounting system, a dynamic torque sensor, a permanent magnet generator, a pitch control system, and a configurable hub for different wind rotor designs. The design includes a finite element method (FEM) analysis to evaluate the different configurations of the proposed system. As a result, the implementation of the complete functional structure, dynamic sensors, and complementary elements is presented. Finally, an approach to the scaling methodology is revealed based on the mathematical criteria of similarity conditions between a lab-scale wind turbine model and a reference prototype, providing useful information on scaling techniques for wind turbines.

References

1.
Bottasso
,
C. L.
,
Campagnolo
,
F.
, and
Petrović
,
V.
,
2014
, “
Wind Tunnel Testing of Scaled Wind Turbine Models: Beyond Aerodynamics
,”
J. Wind Eng. Ind. Aerodyn.
,
127
, pp.
11
28
.10.1016/j.jweia.2014.01.009
2.
Averous
,
N. R.
,
Stieneker
,
M.
,
Kock
,
S.
,
Andrei
,
C.
,
Helmedag
,
A.
,
De Doncker
,
R. W.
,
Hameyer
,
K.
,
Jacobs
,
G.
, and
Monti
,
A.
,
2017
, “
Development of a 4 MW Full-Size Wind-Turbine Test Bench
,”
IEEE J. Emerging Sel. Top. Power Electron.
,
5
(
2
), pp.
600
609
.10.1109/JESTPE.2017.2667399
3.
Milich
,
F. G.
,
Chuaire
,
M. N.
,
Álvarez y Álvarez
,
G. M.
,
Wittwer
,
A. R.
,
Veroli
,
C. G.
,
Basterra
,
J. L.
, and
Adotti
,
M. I.
,
2017
, “
Desarrollo de modelos a escala reducida para el análisis aerodinámico de aerogeneradores
,” Asociación Argentina de Energías Renovables y Ambiente, Corrientes, Argentina, accessed Dec. 5, 2023, http://repositorio.unne.edu.ar/xmlui/handle/123456789/27829
4.
Klein
,
A. C.
,
Bartholomay
,
S.
,
Marten
,
D.
,
Lutz
,
T.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
, and
Krämer
,
E.
,
2018
, “
About the Suitability of Different Numerical Methods to Reproduce Model Wind Turbine Measurements in a Wind Tunnel With a High Blockage Ratio
,”
Wind Energy Sci.
,
3
(
1
), pp.
439
460
.10.5194/wes-3-439-2018
5.
Bottasso
,
C. L.
, and
Campagnolo
,
F.
,
2021
, “
Wind Tunnel Testing of Wind Turbines and Farms
,”
Handbook of Wind Energy Aerodynamics
,
B.
Stoevesandt
,
G.
Schepers
,
P.
Fuglsang
, and
S.
Yuping
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
1
57
.
6.
Canet
,
H.
,
Bortolotti
,
P.
, and
Bottasso
,
C. L.
,
2021
, “
On the Scaling of Wind Turbine Rotors
,”
Wind Energy Sci.
,
6
(
3
), pp.
601
626
.10.5194/wes-6-601-2021
7.
Bianchini
,
A.
,
Bangga
,
G.
,
Baring-Gould
,
I.
,
Croce
,
A.
,
Cruz
,
J. I.
,
Damiani
,
R.
, and
Erfort
,
G.
, et al.,
2022
, “
Current Status and Grand Challenges for Small Wind Turbine Technology
,”
Wind Energy Sci.
,
7
(
5
), pp.
2003
2037
.10.5194/wes-7-2003-2022
8.
Wang
,
C.
,
Campagnolo
,
F.
,
Canet
,
H.
,
Barreiro
,
D. J.
, and
Bottasso
,
C. L.
,
2021
, “
How Realistic Are the Wakes of Scaled Wind Turbine Models?
,”
Wind Energy Sci.
,
6
(
3
), pp.
961
981
.10.5194/wes-6-961-2021
9.
Li
,
B.
,
Zhou
,
D. L.
,
Wang
,
Y.
,
Shuai
,
Y.
,
Liu
,
Q. Z.
, and
Cai
,
W. H.
,
2020
, “
The Design of a Small Lab-Scale Wind Turbine Model With High Performance Similarity to Its Utility-Scale Prototype
,”
Renewable Energy
,
149
, pp.
435
444
.10.1016/j.renene.2019.12.060
10.
Giahi
,
M. H.
, and
Jafarian Dehkordi
,
A.
,
2016
, “
Investigating the Influence of Dimensional Scaling on Aerodynamic Characteristics of Wind Turbine Using CFD Simulation
,”
Renewable Energy
,
97
, pp.
162
168
.10.1016/j.renene.2016.05.059
11.
Urbán
,
A. M.
, and
Guanche
,
R.
,
2019
, “
Wind Turbine Aerodynamics Scale-Modeling for Floating Offshore Wind Platform Testing
,”
J. Wind Eng. Ind. Aerodyn.
,
186
, pp.
49
57
.10.1016/j.jweia.2018.12.021
12.
Vardaroglu
,
M.
,
Gao
,
Z.
,
Avossa
,
A. M.
, and
Ricciardelli
,
F.
,
2022
, “
Validation of a TLP Wind Turbine Numerical Model Against Model-Scale Tests Under Regular and Irregular Waves
,”
Ocean Eng.
,
256
, p.
111491
.10.1016/j.oceaneng.2022.111491
13.
Maheri
,
A.
,
2014
, “
Simulation of Wind Turbines Utilising Smart Blades
,”
J. Therm. Eng.
,
2
(
1
), pp.
557
565
.10.18186/jte.01522
14.
Gupta
,
A.
,
Rotea
,
M. A.
,
Chetan
,
M.
,
Sakib
,
M. S.
, and
Griffith
,
D. T.
,
2021
, “
A Methodology for Robust Load Reduction in Wind Turbine Blades Using Flow Control Devices
,”
Energies
,
14
(
12
), p.
3500
.10.3390/en14123500
15.
McWilliam
,
M. K.
,
Barlas
,
T. K.
,
Madsen
,
H. A.
, and
Zahle
,
F.
,
2018
, “
Aero-Elastic Wind Turbine Design With Active Flaps for AEP Maximization
,”
Wind Energy Sci.
,
3
(
1
), pp.
231
241
.10.5194/wes-3-231-2018
16.
Qian
,
Y.
,
Zhang
,
Y.
,
Sun
,
Y.
, and
Wang
,
T.
,
2023
, “
Numerical Investigations of the Flow Control Effect on a Thick Wind Turbine Airfoil Using Deformable Trailing Edge Flaps
,”
Energy
,
265
, p.
126327
.10.1016/j.energy.2022.126327
17.
Alejandro Franco
,
J.
,
Carlos Jauregui
,
J.
, and
Toledano-Ayala
,
M.
,
2015
, “
Optimizing Wind Turbine Efficiency by Deformable Structures in Smart Blades
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051206
.10.1115/1.4030445
18.
Alejandro Franco
,
J.
,
Carlos Jauregui
,
J.
,
Carbajal
,
A.
, and
Toledano-Ayala
,
M.
,
2017
, “
Shape Morphing Mechanism for Improving Wind Turbines Performance
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051214
.10.1115/1.4036724
19.
Castillo
,
A. D.
,
Jauregui-Correa
,
J. C.
,
Herbert
,
F.
,
Castillo-Villar
,
K. K.
,
Franco
,
J. A.
,
Hernandez-Escobedo
,
Q.
,
Perea-Moreno
,
A.-J.
, and
Alcayde
,
A.
,
2021
, “
The Effect of a Flexible Blade for Load Alleviation in Wind Turbines
,”
Energies
,
14
(
16
), p.
4988
.10.3390/en14164988
20.
Jeong
,
H.
,
Lee
,
S.
, and
Kwon
,
S.-D.
,
2018
, “
Blockage Corrections for Wind Tunnel Tests Conducted on a Darrieus Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
179
, pp.
229
239
.10.1016/j.jweia.2018.06.002
21.
Ross
,
H.
, and
Polagye
,
B.
,
2020
, “
An Experimental Assessment of Analytical Blockage Corrections for Turbines
,”
Renewable Energy
,
152
, pp.
1328
1341
.10.1016/j.renene.2020.01.135
22.
Zilic De Arcos
,
F.
,
Tampier
,
G.
, and
Vogel
,
C. R.
,
2020
, “
Numerical Analysis of Blockage Correction Methods for Tidal Turbines
,”
J. Ocean Eng. Mar. Energy
,
6
(
2
), pp.
183
197
.10.1007/s40722-020-00168-6
23.
Al-Obaidi
,
A. S. M.
, and
Madivaanan
,
G.
,
2022
, “
Investigation of the Blockage Correction to Improve the Accuracy of Taylor’s Low-Speed Wind Tunnel
,”
J. Phys.: Conf. Ser.
,
2222
(
1
), p.
012008
.10.1088/1742-6596/2222/1/012008
24.
Hansen
,
M. O. L.
,
2015
,
Aerodynamics of Wind Turbines
,
Routledge
,
New York
.
25.
Gasch
,
R.
, and
Twele
,
J.
, eds.,
2012
,
Wind Power Plants: Fundamentals, Design, Construction and Operation
,
Springer
,
Berlin, Heidelberg, Germany/Dordrecht, The Netherlands/London/New York
.
26.
Aljafari
,
B.
,
Samithas
,
D.
,
Balachandran
,
P. K.
,
Anandan
,
S.
, and
Babu
,
T. S.
,
2022
, “
Performance Analysis of PLA Material Based Micro-Turbines for Low Wind Speed Applications
,”
Polymers
,
14
(
19
), p.
4180
.10.3390/polym14194180
27.
Marten, D., Saverin, J., Behrens de Luna, R., and Perez-Becker, S., 2024, “
QBlade—Next Generation Wind Turbine Simulation
,” QBlade, Berlin, Germany, accessed Apr. 12, 2024, https://qblade.org/
28.
Madsen
,
H. A.
,
Larsen
,
T. J.
,
Pirrung
,
G. R.
,
Li
,
A.
, and
Zahle
,
F.
,
2020
, “
Implementation of the Blade Element Momentum Model on a Polar Grid and Its Aeroelastic Load Impact
,”
Wind Energy Sci.
,
5
(
1
), pp.
1
27
.10.5194/wes-5-1-2020
You do not currently have access to this content.