Abstract

In this paper, a novel tip clearance control structure, the tip control hole (TCH), is proposed, which is appropriate for the radial turbines with the characteristics of low manufacturing cost, thin blade, insufficient tip space and insufficient strength of winglets. Under the original conditions, when the tip clearance height is 2% of the outlet blade height, the effect from the position and number of holes on the overall turbine performance is discussed, and the physical mechanism of efficiency improvement is analyzed. It is found that the optimal scheme of single hole and multiple-hole structures increase the total-total efficiency by 0.173% and 0.198%, with the relevant the tip leakage decreased by 0.812% and 1.058%. The results show that the closer the holes are to the upstream of the impeller, the better the optimization effect is compared with the original turbine. The main optimization mechanism of leakage control is to restrain the tip leakage vortex. The control hole decreased the scale of the vortex, makes the position of the vortex close to the suction surface. In the optimal scheme, the tip control hole reduced the pressure difference between the suction surface and the pressure surface, suppressed the leakage, and plays an auxiliary role in improving the efficiency.

References

1.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME
Paper No. 93-GT-435.10.1115/93-GT-435
2.
Zhou
,
Z. H.
,
Chen
,
S. W.
,
Lan
,
Y. H.
,
Cui
,
T.
, and
Wang
,
S. T.
,
2016
, “
Effects of Tip Injection in Different Locations on Clearance Leakage Flow of Turbine
,”
J. Propul. Technol.
,
37
(
5
), pp.
879
885
.https://link.oversea.cnki.net/doi/10.13675/j.cnki.tjjs.2016.05.011
3.
Wang
,
Y. F.
,
Zhang
,
W. H.
,
Zou
,
Z. P.
, Cao, X., and Chen, Y.,
2021
, “
Effects of Cooling Jet in the Cavity on Tip-Leakage Flow in the Turbine
,”
J. Eng. Thermophys.
,
42
(
3
), pp.
619
625
.
4.
Li
,
Y. H.
,
Wu
,
Y.
,
Zhang
,
H. D.
, and
Li
,
J.
,
2017
, “
Plasma Actuated Compressor
,”
J. Propul. Technol.
,
38
(
10
), pp.
2164
2171
.https://link.oversea.cnki.net/doi/10.13675/j.cnki.tjjs.2017.10.002
5.
Bao
,
Y. L.
,
Zeng
,
F.
,
Gan
,
M. Y.
, and
Song
,
Y. Q.
,
2022
, “
Effects of Squealer Tip Configuration on Vortex Evolution in Tip Region of Turbine Rotor
,”
J. Propul. Technol.
,
43
(
4
), pp.
93
100
.https://link.oversea.cnki.net/doi/10.13675/j.cnki.tjjs.210575
6.
Camci
,
C.
,
Dey
,
D.
, and
Kavurmacioglu
,
L.
,
2005
, “
Aerodynamics of Tip Leakage Flows Near Partial Squealer Rims in an Axial Flow Turbine Stage
,”
ASME J. Turbomach.
,
127
(
1
), pp.
14
24
.10.1115/1.1791279
7.
Yang
,
T. K.
,
Ye
,
X. M.
,
Lin
,
Q.
, and Hu, J. M.,
2023
, “
Numerical Study on Influence of Blade Tip Slot-Winglet Pattern on Performance Improvement of an Axial Fan
,”
J. Eng. Therm. Energy Power
,
38
(
7
), pp.
36
43.
8.
Fu
,
Y. F.
,
Meng
,
R.
, and
Yu
,
J. Y.
2018
, “
Control Tip Clearance Flow Turbine Cascade Spherical-Bottom Honeycomb Tip
,”
Eng. Thermophys.
,
39
(
11
), pp.
2382
2388
.https://www.researchgate.net/publication/330214612_Control_of_Tip_Clearance_Flow_of_Turbine_Cascade_With_Spherical-Bottom_Honeycomb_Tip
9.
Dakun
,
S.
,
Yuqing
,
W.
,
Jia
,
L.
,
Zihan
,
S.
,
Geng
,
C. W.
,
Dong
,
X.
,
Wang
,
X.
,
Sun
,
X.
,
2023
, “
Optimization of Impedance Boundary-Controlled Casing Treatment on Subsonic Compressors
,”
J. Mech. Sci. Technol.
,
37
(
5
), pp.
2161
2169
.10.1007/s12206-023-2103-0
10.
Fontaneto
,
F.
,
Arts
,
T.
,
Simon
,
M.
, and
Picot
,
P.
,
2016
, “
Aerodynamic Performance of an Ultra-Low Aspect Ratio Centripetal Turbine Stator
,”
Int. J. Turbomach. Propul. Power
,
1
(
1
), p.
3
.10.3390/ijtpp1010003
11.
Cernat
,
B. C.
, and
Lavagnoli
,
S.
,
2019
, “
Characterization of the Unsteady Aerodynamics of Optimized Turbine Blade Tips Through Modal Decomposition Analysis
,”
Int. J. Turbomach. Propul. Power
,
4
(
2
), p.
12
.10.3390/ijtpp4020012
12.
Lamidel
,
D.
,
Daviller
,
G.
,
Roger
,
M.
, and
Posson
,
H.
,
2021
, “
Numerical Prediction of the Aerodynamics and Acoustics of a Tip Leakage Flow Using Large-Eddy Simulation
,”
Int. J. Turbomach. Propul. Power
,
6
(
3
), p.
27
.10.3390/ijtpp6030027
13.
Shi
,
X. Y.
,
Wu
,
Y. H.
, and
Fan
,
X.
,
2018
, “
Numerical Investigations on Tip Leakage Flow Control of High-Pressure Turbine With Single Circumferential Groove Casing Treatment
,”
J. Eng. Thermophys.
,
39
(
11
), pp.
2382
2388
.
14.
Deng
,
Q. H.
,
2008
,
Design and Development, Aerodynamic Performance Test, and Tip Clearance Flow Characteristic of a Radial Inflow Turbine for 100 kW Microturbines
,
Xi'an Jiaotong University
, Xi'An, Shaanxi, China.
15.
Liu
,
H.
, and
Chen
,
Y. Q.
,
2023
, “
Influence of Tip Winglets at Different Locations on Turbine Clearance Leakage
,”
J. Eng. Thermophys.
,
44
(
8
), pp.
2130
2135
.
16.
Li
,
Z.
,
2023
,
Mechanism Investigation of Stability Enhancement by Leading-Edge Winglet on a Transonic Compressor
,
Dalian Maritime University
, Dalian, Liaoning, China.
17.
Jin
,
J. H.
,
2022
,
Numerical and Experimental Study on Tip Leakage Flow Control in Turbine Cascade by Curved Tip Structures
,
Harbin Institute of Technology
, Harbin, Heilongjiang, China.
18.
Sun
,
S.
,
Ning
,
J. X.
,
Sun
,
X. P.
,
Xue
,
C.
,
Si
,
H. X.
,
Lu
,
L. H.
, and
Kong
,
G. Q.
,
2023
, “
Secondary Flow Characteristics of High-Pressure Turbine Variable Angle Honeycomb Tip
,”
J. Eng. Thermophys.
,
44
(
11
), pp.
116
124
.
19.
Wang
,
Y.
,
Yu
,
J.
,
Song
,
Y.
, and
Chen
,
F.
,
2020
, “
Parameter Optimization of the Composite Honeycomb Tip in a Turbine Cascade
,”
Energy
,
197
, pp.
117236
117236
.10.1016/j.energy.2020.117236
20.
Wang
,
W.
,
2013
,
Numerical Reserch on an Unshrouded Compressor With Holed Casing Treatment
,
Shanghai Jiao Tong University
, Shanghai, China.
21.
Menter
,
F. R.
,
1992
, “
Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows
,”
AIAA
Paper No. AIAA 93-2906.10.2514/6.AIAA 93-2906
22.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
You do not currently have access to this content.