This paper which consists of Parts I and II presents a general and practical fluid lubrication theory of roller bearings lubricated by Newtonian and non-Newtonian lubricants with considerations to the effect of sliding of roller and the influence of unsteady load. In Part I, the fundamental theory for the lubrication between two rotating cylinders in contact has been investigated. The load capacity and friction of a non-Newtonian lubricant, supposed to be a Bingham plastic, coincide approximately at high speed with those of a Newtonian lubricant with viscosity equivalent to the plastic viscosity of the non-Newtonian lubricant. Under unsteady loads, the squeeze action works effectively so that the load capacity increases. The amount of friction is 4/3 and the load capacity is 2/3 in the case of two rotating cylinders in contact involving sliding, compared with that involving no sliding.

This content is only available via PDF.
You do not currently have access to this content.