Conventional calculations of ball and roller bearing carrying capacity and fatigue life assume that the raceway bodies are rigid structures and that all elastic deformation occurs at the rolling elements’ contact with the raceways. In many instances, and particularly with aircraft applications, the bearing rings and their supports cannot be considered rigid. One such application is the planet gear in a transmission. This report develops a theory whereby the effects of the elastic distortions of the outer race of a rolling-element bearing on the internal load distribution and fatigue life of the bearing can be considered. The theory has been programmed for a high-speed, digital computer. An example of calculation for a planet gear roller bearing whose outer race is integral with the gear and of relatively thin section is given. The distortions of the flexible outer ring cause a significantly lower bearing fatigue life (L10) than would occur if the outer ring were rigid and considering a practical range of bearing diametral clearances. Mr. Jones developed the theoretical analysis for this paper and Mr. Harris provided the programming and the experimental data.

This content is only available via PDF.
You do not currently have access to this content.