Abstract

This paper presents three different multiobjective optimization strategies for a high specific speed centrifugal volute pump design. The objectives of the optimization consist of maximizing the efficiency and minimizing the cavitation while maintaining the Euler head. The first two optimization strategies use a three-dimensional (3D) inverse design method to parametrize the blade geometry. Both meridional shape and 3D blade geometry are changed during the optimization. In the first approach, design of experiment (DOE) method is used and the pump efficiency is obtained from computational fluid dynamics (CFD) simulations, while cavitation is evaluated by using minimum pressure on blade surface predicted by 3D inverse design method. The design matrix is then used to create a surrogate model where optimization is run to find the best tradeoff between cavitation and efficiency. This optimized geometry is manufactured and tested and is found to be 3.9% more efficient than the baseline with reduced cavitation at high flow. In the second approach, only the 3D inverse design method output is used to compute the efficiency and cavitation parameters and this leads to considerable reduction to the computational time. The resulting optimized geometry is found to be similar to the computationally more expensive solution based on 3D CFD results. In order to compare the inverse design based optimization to the conventional optimization, an equivalent optimization is carried out by parametrizing the blade angle and meridional shape.

References

References
1.
Nelik
,
L.
,
1999
,
Centrifugal & Rotary Pumps: Fundamentals With Applications
,
CRC Press
,
Boca Raton
, FL.
2.
Cugal
,
M.
,
Bloomfield
,
S.
,
Jensen
,
B. M.
, and
Jacobsen
,
C. B.
,
2009
, “
A Modern Pump Design Process for Higher Efficiency and Product Accuracy
,”
ASME
Paper No. FEDSM2009-78555.10.1115/FEDSM2009-78555
3.
Heo
,
M. W.
,
Ma
,
S. B.
,
Shim
,
H. S.
, and
Kim
,
K. Y.
,
2016
, “
High-Efficiency Design Optimization of a Centrifugal Pump
,”
J. Mech. Sci. Technol.
,
30
(
9
), pp.
3917
3927
.10.1007/s12206-016-0803-4
4.
Tong
,
S. G.
,
Zhao
,
H.
,
Liu
,
H. Q.
,
Yu
,
Y.
,
Li
,
J. F.
, and
Cong
,
F. Y.
,
2020
, “
Multi-Objective Optimization of Multistage Centrifugal Pump Based on Surrogate Model
,”
ASME J. Fluids Eng.
,
142
(
1
), p.
011101
.10.1115/1.4043775
5.
Donno
,
R. D.
,
Ghidoni
,
A.
,
Noventa
,
G.
, and
Rebay
,
S.
,
2019
, “
Shape Optimization of the ERCOFTAC Centrifugal Pump Impeller Using Open-Source Software
,”
Optim. Eng.
,
20
, pp.
929
953
.10.1007/s11081-019-09428-3
6.
Wang
,
W. J.
,
Osman
,
M. K.
,
Pei
,
J.
,
Gan
,
X. C.
, and
Yin
,
T. Y.
,
2019
, “
Artificial Neural Networks Approach for a Multi-Objective Cavitation Optimization Design in a Double-Suction Centrifugal Pump
,”
Processes
,
7
(
5
), p.
246
.10.3390/pr7050246
7.
Xu
,
Y.
,
Tan
,
L.
,
Cao
,
S. L.
, and
Qu
,
W. S.
,
2017
, “
Multiparameter and Multiobjective Optimization Design of Centrifugal Pump Based on Orthogonal Method
,”
Proc Inst. Mech. Eng Part C
,
231
(
14
), pp.
2569
2579
.10.1177/0954406216640303
8.
Wang
,
K.
,
Luo
,
G. Z.
,
Li
,
Y.
,
Xia
,
R. C.
, and
Liu
,
H. L.
,
2020
, “
Multi-Condition Optimization and Experimental Verification of Impeller for a Marine Centrifugal Pump
,”
Int. J. Nav. Arch. Ocean Eng.
,
12
, pp.
71
84
.10.1016/j.ijnaoe.2019.07.002
9.
Wang
,
C.
,
Zhang
,
Y. X.
,
Hou
,
H. C.
,
Yuan
,
Z. Y.
, and
Liu
,
M.
,
2020
, “
Optimization Design of an Ultra-Low Specific-Speed Centrifugal Pump Using Entropy Production Minimization and Taguchi Method
,”
Int. J. Fluid Mach. Syst.
,
13
(
1
), pp.
55
67
.10.5293/IJFMS.2020.13.1.055
10.
Shim
,
H. S.
,
Kim
,
K. Y.
, and
Choi
,
Y. S.
,
2018
, “
Three-Objective Optimization of a Centrifugal Pump to Reduce Flow Recirculation and Cavitation
,”
ASME J. Fluids Eng.
,
140
(
9
), p.
091202
.10.1115/1.4039511
11.
Advanced Design Technology
,
2019
, “
TURBOdesign1, Version 6.6.0
,”
Advanced Design Technology
,
London
.
12.
Zangeneh
,
M.
,
1991
, “
A Compressible Three‐Dimensional Design Method for Radial and Mixed Flow Turbomachinery Blades
,”
Int. J. Numer. Methods Fluids
,
13
(
5
), pp.
599
624
.10.1002/fld.1650130505
13.
Dornberg
,
R.
,
2000
, “
Multidisciplinary Optimization in Turbomachinery Design
,”
European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000
, Barcelona, Spain, Sept. 11–14, pp.
1
15
.
14.
Boniuti
,
D.
, and
Zangeneh
,
M.
,
2009
, “
On the Coupling of Inverse Design and Optimization Techniques for the Multi-Objective, Multi-Point Design of Turbomachinery Blades
,”
ASME J. Turnbomach.
,
131
(
2
), p.
021014
.10.1115/1.2950065
15.
TURBOdesign Optima
,
Version 6.6.0, 2019
,
Advanced Design Technology Ltd
,
London, UK
.
16.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Mine Valuations and Allied Problems at the Witwatersrand
,” Master's thesis,
University of Witwatersrand
,
South Africa
.
17.
Zangeneh
,
M.
,
Goto
,
A.
, and
Harada
,
H.
,
1998
, “
On the Design Criteria for Suppression of Secondary Flows in Centrifugal and Mixed Flow Impellers
,”
ASME J. Turbomach.
,
120
(
4
), pp.
723
735
.10.1115/1.2841783
18.
Goto
,
A.
,
Zangeneh
,
A.
, and
Takemura
,
T.
,
1996
, “
Suppression of Secondary Flows in a Mixed Flow Pump Impeller by Application of 3-D Inverse Design Method
,”
ASME J. Turbomach.
,
118
(
3
), pp.
544
551
.10.1115/1.2836701
19.
Zangeneh
,
M.
, and
Daneshkhah
,
K.
,
2009
, “
A Fast 3D Inverse Design Based Multi-Objective Optimization Strategy for Design of Pumps
,”
ASME
Paper No. FEDSM2009-7844.10.1115/FEDSM2009-7844
20.
Goto
,
A.
,
2016
, “
Historical Perspective on Fluid Machinery Flow Optimization in an Industry
,”
Int. J. Fluid Mach. Syst.
,
9
(
1
), pp.
75
84
.10.5293/IJFMS.2016.9.1.075
21.
ANSI/HI 14.6-2011
,
2001
, “
American National Standard for Rotodynamic Pumps for Hydraulic Performance Acceptance Tests
,” Hydraulic Institute, Standard.
22.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
23.
Johnson
,
M. W.
,
1978
, “
Secondary Flows in Rotating Bends
,”
ASME J. Eng. Power
,
100
(
4
), pp.
553
560
.10.1115/1.3446393
24.
Advanced Design Technology
,
2019
, “TURBOdesign Suite, Version 6.6.0,”
Advanced Design Technology
,
London
.
You do not currently have access to this content.