In this study, a reduced-order nonlinear dynamic model for shaft-disk-blade unit is developed. The multibody dynamic approach with the small deformation theory for both blade-bending and shaft-torsional deformations is adopted. The equations of motion are developed using Lagrange’s equation in conjunction with the assumed modes method (AMM) for approximating the blade transverse deflection. The model showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearity, modal coupling, stiffening, softening, and parametric excitations. The model is suitable for extensive parametric studies for predesign stage purposes as well as for diagnostics of rotor malfunctions, when blade and shaft torsional vibration interaction is suspected.

1.
Shilahansi
,
L.
,
1958
, “
Bending Frequencies of a Rotating Cantilever Beam
,”
ASME J. Appl. Mech.
,
25
, pp.
28
30
.
2.
Pruelli
,
D.
,
1972
, “
Natural Bending Frequency Comparable to Rotational Frequency in Rotating Cantilever Beam
,”
ASME J. Appl. Mech.
,
39
, pp.
602
604
.
3.
Likins
,
P. W.
,
Barbera
,
F. J.
, and
Baddeley
,
V.
,
1973
, “
Mathematical Modeling of Spinning Elastic Bodies
,”
AIAA J.
,
11
, No.
9
, pp.
1251
1258
.
4.
Kaza
,
K.
, and
Kvaternik
,
R.
,
1977
, “
Nonlinear Flap-Lag-Axial Equations of a Rotating Beam
,”
AIAA J.
,
15
, No.
6
, pp.
871
874
.
5.
Yokoyama
,
T.
,
1988
, “
Free Vibration Characteristics of Rotating Timoshenko Beams
,”
Int. J. Mech. Sci.
,
30
, No.
10
, pp.
743
755
.
6.
Al-Bedoor
,
B. O.
, and
Khulief
,
Y.
,
1997
, “
General Planar Dynamics of a Sliding Flexible Link
,”
J. Sound Vib.
,
206
, No.
5
, pp.
641
661
.
7.
Srinivasan
,
A. V.
,
1984
, “
Vibrations of Bladed-Disk Assemblies: A Selected Survey
,”
ASME J. Vibr. Acoust.
,
106
, pp.
165
168
.
8.
Crawley
,
E.
, and
Mokadam
,
D.
,
1984
, “
Stager Angle Dependence of the Inertial and the Elastic Coupling in Bladed Disks
,”
ASME J. Vibr. Acoust.
,
106
, pp.
181
188
.
9.
Tang
,
D.
, and
Wang
,
M.
,
1984
, “
Coupling Technique of Rotor-Fuselage Dynamic Analysis
,”
ASME J. Vibr. Acoust.
,
106
, pp.
235
238
.
10.
Loewy
,
R. G.
, and
Khader
,
N.
,
1984
, “
Structural Dynamics of Rotating Bladed-Disk Assemblies Coupled With Flexible Shaft Motions
,”
AIAA J.
,
22
, No.
9
, pp.
1319
1327
.
11.
Crawley
,
E. F.
,
Ducharme
,
E.
, and
Mokadam
,
D.
,
1986
, “
Analytical and Experimental Investigation of the Coupled Bladed Disk Shaft Whirl of a Cantilever Turbofan
,”
ASME J. Eng. Gas Turbines Power
,
108
, pp.
567
576
.
12.
Okabe
,
A.
,
Otawara
,
Y.
,
Kaneko
,
R.
,
Matsushita
,
O.
, and
Namura
,
K.
,
1991
, “
An Equivalent Reduced Modeling Method and Its Application to Shaft-Blade Coupled Torsional Vibration Analysis of a Turbine-Generator Set
,”
Proc. Inst. Mech. Eng.
,
205
, pp.
173
181
.
13.
Huang
,
S. C.
, and
Ho
,
K. B.
,
1996
, “
Coupled Shaft-Torsion and Blade-Bending Vibrations of a Rotating Shaft-Blade Unit
,”
ASME J. Eng. Gas Turbines Power
,
118
, pp.
100
106
.
14.
Al-Bedoor
,
B. O.
,
1998
, “
Vibrations of a Rotating Blade With Flexible Coupling in the Drive System
,”
ASME Pressure Vessels Piping, PVP
,
368
, pp.
69
76
.
15.
Szabelski
,
K.
, and
Warminski
,
J.
,
1995
, “
Parametric Self-Excited Nonlinear System Vibration Analysis With Inertial Excitation
,”
Int. J. Nonlinear Mech.
,
30
, No.
2
, pp.
179
189
.
You do not currently have access to this content.