Modern gas turbines are cooled using air diverted from the compressor. In a “direct-transfer” preswirl system, this cooling air flows axially across the wheel space from stationary preswirl nozzles to receiver holes located in the rotating turbine disk. The distribution of the local Nusselt number Nu on the rotating disk is governed by three nondimensional fluid-dynamic parameters: preswirl ratio βp, rotational Reynolds number Reϕ, and turbulent flow parameter λT. This paper describes heat transfer measurements obtained from a scaled model of a gas turbine rotor-stator cavity, where the flow structure is representative of that found in the engine. The experiments reveal that Nu on the rotating disk is axisymmetric except in the region of the receiver holes, where significant two-dimensional variations have been measured. At the higher coolant flow rates studied, there is a peak in heat transfer at the radius of the preswirl nozzles associated with the impinging jets from the preswirl nozzles. At lower coolant flow rates, the heat transfer is dominated by viscous effects. The Nusselt number is observed to increase as either Reϕ or λT increases.

1.
Owen
,
J. M.
, and
Rogers
,
R. H.
, 1989,
Flow and Heat Transfer in Rotating Disc Systems: Vol. 1, Rotor-Stator Systems
,
Research Studies Press
, Taunton, UK and
Wiley
, New York.
2.
Karabay
,
H.
,
Wilson
,
M.
, and
Owen
,
J. M.
, 2001, “
Predictions of Effect of Swirl on Flow and Heat Transfer in a Rotating Cavity
,”
Int. J. Heat Fluid Flow
0142-727X,
22
, pp.
143
155
.
3.
Pilbrow
,
R.
,
Karabay
,
H.
,
Wilson
,
M.
, and
Owen
,
J. M.
, 1999, “
Heat Transfer in a “Cover-Plate” Pre-Swirl Rotating-Disc System
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
249
256
.
4.
Meierhofer
,
B.
, and
Franklin
,
C. J.
, 1981, “
An Investigation of a Pre-Swirled Cooling Airflow to a Turbine Disc by Measuring the Air Temperature in the Rotating Channels
,” ASME Paper No. 81-GT-132.
5.
Dittmann
,
M.
,
Geis
,
T.
,
Schramm
,
V.
,
Kim
,
S.
, and
Wittig
,
S.
, 2002, “
Discharge Coefficients of a Pre-Swirl System in Secondary Air Systems
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
119
124
.
6.
Dittmann
,
M.
,
Dullenkopf
,
K.
, and
Wittig
,
S.
, 2003, “
Direct Transfer Pre-Swirl System: One-Dimensional Modular Characterization of the Flow
,” ASME Paper No. GT-2003-38312.
7.
Geis
,
T.
,
Dittmann
,
M.
, and
Dullenkopf
,
K.
, 2003, “
Cooling Air Temperature Reduction in a Direct Transfer Pre-Swirl System
,” ASME Paper No. GT-2003-38231.
8.
Chew
,
J. W.
,
Hills
,
N.
,
Kalatov
,
J. S.
,
Scanlon
,
T.
, and
Turner
,
A. B.
, 2003, “
Measurement and Analysis of Flow in a Pre-Swirled Cooling Air Delivery System
,” ASME Paper No. GT-2003-38084.
9.
Yan
,
Y.
,
Gord
,
M. F.
,
Lock
,
G. D.
,
Wilson
,
M.
, and
Owen
,
J. M.
, 2003, “
Fluid Dynamics of a Pre-Swirl Rotating-Disk System
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
641
647
).
10.
Lock
,
G. D.
,
Yan
,
Y.
,
Wilson
,
M.
, and
Owen
,
J. M.
, 2003, “
Heat Transfer Measurements Using Liquid Crystal in a Pre-Swirl Rotating-Disc System
,” ASME Paper 2003-GT-38123.
11.
Gillespie
,
D. R. H.
,
Wang
,
Z.
, and
Ireland
,
P. T.
, 1998, “
Full Surface Local Heat Transfer Coefficient Measurements in a Model of an Integrally Cast Impingement Cooling Geometry
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
92
99
.
12.
Newton
,
P. J.
,
Yan
,
Y.
,
Stevens
,
N. E.
,
Evatt
,
S. T.
,
Lock
,
G. D.
, and
Owen
,
J. M.
, 2003, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal, Part 1: An Improved Technique
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
14
22
.
13.
Gord
,
M. F.
,
Wilson
,
M.
, and
Owen
,
J. M.
, 2003, “
Effects of Swirl and Flow Rate on the Flow and Heat Transfer in a Pre-Swirl Rotating-Disc System
,” IGTC2003 Tokyo TS-064.
14.
Owen
,
J. M.
,
Newton
,
P. J.
, and
Lock
,
G. D.
, 2003, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal, Part 2: Experimental Uncertainties
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
23
28
.
You do not currently have access to this content.