This paper presents an adjoint analysis for three-dimensional unsteady viscous flows aimed at the calculation of linear worksum sensitivities involved in turbomachinery forced response predictions. The worksum values are normally obtained from linear harmonic flow calculations but can also be computed using the solution to the adjoint of the linear harmonic flow equations. The adjoint method has a clear advantage over the linear approach if used within a rotor forced vibration minimization procedure which requires the structural response to a large number of different flow excitation sources characterized by a unique frequency and interblade phase angle. Whereas the linear approach requires a number of linear flow calculations at least equal to the number of excitation sources, the adjoint method reduces this cost to a single adjoint solution for each structural mode of rotor response. A practical example is given to illustrate the dramatic computational saving associated with the adjoint approach.

1.
Verdon
,
J. M.
, 1993, “
Review of Unsteady Aerodynamic Methods for Turbomachinery Aeroelastic and Aeroacoustic Applications
,”
AIAA J.
0001-1452,
31
(
2
), pp.
235
250
.
2.
Marshall
,
J. G.
, and
Imregun
,
M.
, 1996, “
A Review of Aeroelasticity Methods With Emphasis on Turbomachinery Applications
,”
J. Fluids Struct.
0889-9746,
10
(
3
), pp.
237
267
.
3.
Vahdati
,
M.
,
Sayma
,
A. I.
, and
Imregun
,
M.
, 2000, “
An Integrated Nonlinear Approach for Turbomachinery Forced Response Prediction. Part II: Case Studies
,”
J. Fluids Struct.
0889-9746,
14
(
1
), pp.
103
125
.
4.
Giles
,
M. B.
, 1992, “
An Approach for Multi-Stage Calculations Incorporating Unsteadiness
,” ASME Paper No. 92-GT-282.
5.
Hall
,
K. C.
, 1993, “
Deforming Grid Variational Principle for Unsteady Small Disturbance Flows in Cascades
,”
AIAA J.
0001-1452
31
(
5
), pp.
891
900
.
6.
Hall
,
K. C.
,
Clark
,
W. S.
, and
Lorence
,
C. B.
, 1994, “
A Linearized Euler Analysis of Unsteady Transonic Flows in Turbomachinery
,”
ASME J. Turbomach.
0889-504X,
116
(
3
), pp.
477
488
.
7.
Clark
,
W. S.
, and
Hall
,
K. C.
, 1995, “
A Numerical Model of the Onset of Stall Flutter in Cascades
,” ASME Paper No. 95-GT-0377.
8.
Marshall
,
J. G.
, and
Giles
,
M. B.
, 1998, “
Some Applications of a Time-Linearized Euler Method to Flutter and Forced Response in Turbomachinery
,”
Proc., 8th ISUAAT, Stockholm, Sweden
,
T. H.
Fransson
, ed.,
Kluwer Academic
, Dordrecht, The Netherlands, pp.
225
240
.
9.
Panovsky
,
J.
, and
Carson
,
S. M.
, 1998, “
Prediction of Turbine Blade Vibratory Response Due to Upstream Vane Distress
,”
ASME J. Turbomach.
0889-504X,
120
(
3
), pp.
515
521
.
10.
Hoyniak
,
D.
, and
Clark
,
W. S.
, 1999, “
Aerodynamic Damping Predictions Using a Linearized Navier-Stokes Analysis
,” ASME Paper No. 99-GT-207.
11.
Suddhoo
,
A.
,
Giles
,
M. B.
, and
Stow
,
P.
, 2003, “
Simulation of Inviscid Blade Row Interaction Using a Linear and a NonLinear Method
.” ISABE Paper 91-7049.
12.
Vahdati
,
M.
,
Green
,
J. S.
,
Marshall
,
J. G.
, and
Imregun
,
M.
, 1998, “
Forced Response Predictions for a HP Turbine Rotor Blade
,”
Proc. RTO Applied Vehicle Technology Panel Symposium on Design Principles and Methods for Aircraft Gas Turbine Engines
,
NATO Research Technology Organization
, Neully-sur-Seine, France.
13.
Green
,
J. S.
, and
Marshall
,
J. G.
, 1999, “
Forced Response Predictions Within the Design Process
,”
Proc., 3rd European Conference on Turbomachinery-Fluid Dynamics and Thermodynamics
,
von Karman Institute for Fluid Dynamics
, Rhode Saint-Genese, Belgium.
14.
Sbardella
,
L.
, and
Imregun
,
M.
, 2001, “
Linearized Unsteady Viscous Turbomachinery Flows Using Hybrid Grids
,”
ASME J. Turbomach.
0889-504X,
123
(
3
), pp.
568
582
.
15.
Jameson
,
A.
, 1988, “
Aerodynamic Design via Control Theory
,”
J. Sci. Comput.
0885-7474, pp.
233
260
.
16.
Jameson
,
A.
, 1995, “
Optimum Aerodynamic Design Using CFD and Control Theory
,” AIAA Paper 1995-1729.
17.
Jameson
,
A.
, 1999, “
Re-Engineering the Design Process Through Computation
,”
AIAA J.
0001-1452 Aircr.,
36
(
1
), pp.
36
50
.
18.
Giles
,
M. B.
, and
Pierce
,
N. A.
, 2000, “
An Introduction to the Adjoint Approach to Design
,”
Flow, Turbul. Combust.
1386-6184,
65
(
3–4
), pp.
393
415
.
19.
Florea
,
R.
, and
Hall
,
K. C.
, 2001, “
Sensitivity Analysis of Unsteady Inviscid Flow Through Turbomachinery Cascades
,”
AIAA J.
0001-1452,
39
(
6
), pp.
1047
1056
.
20.
Hall
,
K. C.
, and
Thomas
,
J. P.
, 2002, “
Sensitivity Analysis of Coupled Aerodynamic∕Structural Dynamic Behavior of Blade Rows
,”
Proc., 7th National Turbine Engine HCF Conference
.
21.
Thomas
,
J. P.
,
Hall
,
K. C.
, and
Dowell
,
E. H.
, 2003, “
A Discrete Adjoint Approach for Modeling Unsteady Aerodynamic Design Sensitivities
,” AIAA Paper 2003-0041.
22.
Giles
,
M. B.
,
Duta
,
M. C.
,
Müller
,
J.-D.
, and
Pierce
,
N. A.
, 2003, “
Algorithm Developments for Discrete Adjoint Methods
,”
AIAA J.
0001-1452,
41
(
2
), pp.
198
205
.
23.
Duta
,
M. C.
, 2002, “
The Use of The Adjoint Method for the Minimisation of Forced Vibration in Turbomachinery
,” PhD thesis, University of Oxford, United Kingdom.
24.
Duta
,
M. C.
,
Giles
,
M. B.
, and
Campobasso
,
M. S.
, 2002, “
The Harmonic Adjoint Approach to Unsteady Turbomachinery Design
,”
Int. J. Numer. Methods Fluids
0271-2091,
40
(
3–4
), pp.
323
332
.
25.
Moinier
,
P.
, 1999, “
Algorithm Developments for an Unstructured Viscous Flow Solver
,” PhD thesis, University of Oxford, United Kingdom.
26.
Giles
,
M. B.
, 1990, “
Nonreflecting Boundary Conditions for Euler Equation Calculations
,”
AIAA J.
0001-1452,
28
(
12
), pp.
2050
2058
.
27.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
, 1994, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerosp.
0034-1223, pp.
5
21
.
28.
Campobasso
,
M. S.
, and
Giles
,
M. B.
, 2003, “
Effect of Flow Instabilities on the Linear Analysis of Turbomachinery Aeroelasticity
,” AIAA
J. Propul. Power
0748-4658,
19
(
2
), pp.
250
259
.
29.
Smith
,
S. N.
, 1971, “
Discrete Frequency Sound Generation in Axial Flow Turbomachines
,” Tech. Rep. CUED∕A-Turbo∕TR 29, University of Cambridge, Department of Engineering, Cambridge, United Kingdom.
30.
Whitehead
,
D. S.
, 1988, “
Classic Two-Dimensional Methods
,”
AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines
, AGARD-AG-298,
M.
Platzer
and
F. O.
Carta
, eds., Vol.
1
,
NATO Advisory Group for Aerospace Research and Development
, Neully-sur-Seine, France.
31.
Telionis
,
D. P.
, 1981,
Unsteady Viscous Flows
,
Springer
, New York, pp.
156
158
, Chap. 4.
32.
Fransson
,
T. H.
, et al.
, 1999, “
Viscous and Inviscid Linear∕Nonlinear Calculations Versus Quasi Three-Dimensional Experimental Cascade Data for a New Aeroelastic Turbine Standard Configuration
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
717
725
.
33.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Marshall
,
J. G.
, and
Imregun
,
M.
, 2001, “
Mechanisms and Prediction Methods for Fan Blade Stall Flutter
,” AIAA
J. Propul. Power
0748-4658,
17
(
5
), pp.
1100
1108
.
You do not currently have access to this content.