The alloys Haynes 230 and Inconel 617 are potential candidates for the intermediate heat exchangers (IHXs) of (very) high temperature reactors ((V)-HTRs). The behavior under corrosion of these alloys by the (V)-HTR coolant (impure helium) is an important selection criterion because it defines the service life of these components. At high temperature, the Haynes 230 is likely to develop a chromium oxide on the surface. This layer protects from the exchanges with the surrounding medium and thus confers certain passivity on metal. At very high temperature, the initial microstructure made up of austenitic grains and coarse intra- and intergranular M6C carbide grains rich in W will evolve. The M6C carbides remain and some M23C6 richer in Cr appear. Then, carbon can reduce the protective oxide layer. The alloy loses its protective coating and can corrode quickly. Experimental investigations were performed on these nickel based alloys under an impure helium flow (Rouillard, F., 2007, “Mécanismes de formation et de destruction de la couche d’oxyde sur un alliage chrominoformeur en milieu HTR,” Ph.D. thesis, Ecole des Mines de Saint-Etienne, France). To predict the surface reactivity of chromium under impure helium, it is necessary to determine its chemical activity in a temperature range close to the operating conditions of the heat exchangers (T1273K). For that, high temperature mass spectrometry measurements coupled to multiple effusion Knudsen cells are carried out on several samples: Haynes 230, Inconel 617, and model alloys 1178, 1181, and 1201. This coupling makes it possible for the thermodynamic equilibrium to be obtained between the vapor phase and the condensed phase of the sample. The measurement of the chromium ionic intensity (I) of the molecular beam resulting from a cell containing an alloy provides the values of partial pressure according to the temperature. This value is compared with that of the pure substance (Cr) at the same temperature. These calculations provide thermodynamic data characteristic of the chromium behavior in these alloys. These activity results call into question those previously measured by Hilpert and Ali-Khan (1978, “Mass Spectrometric Studies of Alloys Proposed for High-Temperature Reactor Systems: I. Alloy IN-643,” J. Nucl. Mater., 78, pp. 265–271; 1979, “Mass Spectrometric Studies of Alloys Proposed for High-Temperature Reactor Systems: II. Inconel Alloy 617 and Nimomic Alloy PE 13,” J. Nucl. Mater., 80, pp. 126–131), largely used in the literature.

1.
Venkatraman
,
M.
, and
Neumann
,
J. P.
, 1990,
Binary Alloy Phase Diagrams
, 2nd ed.,
T. B.
Massalski
,
H.
Okamoto
,
P. B.
Subramanian
,
L.
Kacprzak
, and
W. W.
Scott
, Jr.
, eds.,
ASM International
,
Materials Park, OH
, p.
1293
.
2.
Cabet
,
C.
,
Terlain
,
A.
,
Lett
,
P.
,
Guétaz
,
L.
, and
Gentzbittel
,
J. -M.
, 2006, “
High Temperature Corrosion of Structural Materials Under Gas-Cooled Reactor Helium
,”
Mater. Corros.
0947-5117,
57
, pp.
147
153
.
3.
Rouillard
,
F.
, 2007, “
Mécanismes de formation et de destruction de la couche d’oxyde sur un alliage chrominoformeur en milieu HTR
,” Ph.D. thesis, Ecole des Mines de Saint-Etienne, France.
4.
Quadakkers
,
W. J.
, and
Schuster
,
H.
, 1985, “
Corrosion of High Temperature Alloys in the Primary Circuit Helium of High Temperature Gas Cooled Reactors.-Part I: Theoretical Background
,
Werkst. Korros.
0043-2822,
36
(
4
), pp.
141
150
.
5.
Brenner
,
K. G. E.
, and
Graham
,
L. W.
, 1984, “
The Development and Application of a Unified Corrosion Model for High-Temperature Gas-Cooled Reactor Systems
,”
Nucl. Technol.
,
66
(
2
), pp.
404
414
. 0029-5450
6.
Warren
,
M. R.
, 1986, “
Rapid Decarburization and Carburization in High Temperature Alloys in Impure Helium Environments
,”
High Temp. Technol.
,
4
, pp.
119
130
.
7.
Rouillard
,
F.
,
Cabet
,
C.
,
Wolski
,
K.
, and
Pijolat
,
M.
, 2008, “
Thermodynamic Modeling of the Oxide Destruction on a Nickel Base Alloy in Impure Helium of Gas Cooled Reactors
,”
Proceedings of the High Temperature Corrosion and Protection of Materials
, Les Embiez, France.
8.
Chatain
,
S.
,
Gonella
,
C.
,
Bordier
,
G.
, and
Le Ny
,
J.
, 1995, “
Thermodynamic Activity Measurements of the Liquid Cu–Gd Alloy by High Temperature Mass Spectrometry
,”
J. Alloys Compd.
0925-8388,
228
, pp.
112
118
.
9.
Rouillard
,
F.
,
Cabet
,
C.
,
Wolski
,
K.
,
Terlain
,
A.
,
Tabarant
,
M.
,
Pijolat
,
M.
, and
Valdivieso
,
F.
, 2007, “
High Temperature Corrosion of a Nickel Base Alloy by Helium Impurities
,”
J. Nucl. Mater.
0022-3115,
362
, pp.
248
252
.
10.
Hilpert
,
K.
, and
Ali-Khan
,
I.
, 1979, “
Mass Spectrometric Studies of Alloys Proposed for High-Temperature Reactor Systems: II. Inconel Alloy 617 and Nimomic Alloy PE 13
,”
J. Nucl. Mater.
,
80
, pp.
126
131
. 0022-3115
11.
Rouillard
,
F.
,
Cabet
,
C.
,
Gossé
,
S.
,
Girardin
,
G.
, and
Blat
,
M.
, 2008 “
Corrosion Issues of HTR Structural Metallic Materials
,”
Proceedings of the Fourth HTR Technology Conference
, Washington, DC.
12.
Hilpert
,
K.
, and
Ali-Khan
,
I.
, 1978, “
Mass Spectrometric Studies of Alloys Proposed for High-Temperature Reactor Systems: I. Alloy IN-643
,”
J. Nucl. Mater.
,
78
, pp.
265
271
. 0022-3115
13.
Chatillon
,
C.
,
Pattoret
,
A.
, and
Drowart
,
J.
, 1975, “
Thermodynamic Studies of Condensed Phases by Mass Spectrometry at High Temperature: Analysis of the Method and Review of the Results
,”
High Temp. - High Press.
0018-1544,
7
, pp.
119
148
.
14.
Chatillon
,
C.
, 1998, “
La Spectrométrie de Masse à Haute Température: Données Accessibles et Développements Récents
,” La Revue de Métallurgie-CIT/Science et Génie des Matériaux, pp.
1077
1099
.
15.
Heyrman
,
M.
, 2004, “
Etude par Spectrométrie de Masse à Haute Température du Système Al2O3–C: Application aux Fours d’Elaboration sous Vide
,” Ph.D. thesis, INPG, Grenoble.
16.
Baïchi
,
M.
,
Chatillon
,
C.
,
Guéneau
,
C.
, and
Chatain
,
S.
, 2001, “
Mass Spectrometry Study of UO2–ZrO2 Pseudo-Binary System
,”
J. Nucl. Mater.
,
294
, pp.
84
87
. 0022-3115
17.
Chatain
,
S.
,
Larousse
,
B.
,
Maillault
,
C.
,
Guéneau
,
C.
, and
Chatillon
,
C.
, 2008, “
Thermodynamic Activity Measurements of Iron in Fe–Zr Alloys by High Temperature Mass Spectrometry
,”
J. Alloys Compd.
,
457
, pp.
157
163
. 0925-8388
18.
Cabet
,
C.
, and
Terlain
,
A.
, 2005, “
High Temperature Corrosion of Structural Materials Under Gas-Cooled Reactor Helium
,”
Proceedings of the Eurocorr 2005
, Lisbon, Portugal, Paper No. O-355.
19.
Chase
,
M. W.
, Jr.
, 1998,
NIST-JANAF Thermochemical Tables Journal of Physical and Chemical Reference Data
, 4th ed.,
American Chemical Society
,
Washington, DC
/
American Institute of Physics
,
New York
, Pt. II.
You do not currently have access to this content.