A frequently employed method for aerodynamic flame stabilization in modern premixed low emission combustors is the breakdown of swirling flows; with carefully optimized tailoring of the swirler, a sudden transition in the flow field in the combustor can be achieved. A central recirculation zone evolves at the cross-sectional area change located at the entrance of the combustion chamber and anchors the flame in a fixed position. In general, premixed combustion in swirling flows can lead to flame flashback that is caused by combustion induced vortex breakdown near the centerline of the flow. In this case, the recirculation zone suddenly moves upstream and stabilizes in the premix zone (Kröner , 2007, “Flame Propagation in Swirling Flows—Effect of Local Extinction on the Combustion Induced Vortex Breakdown,” Combust. Sci. Technol., 179, pp. 1385–1416). This type of flame flashback is caused by a strong interaction between the flame chemistry and vortex dynamics. The analysis of the vorticity transport equation shows that the axial gradient of the azimuthal vorticity is of particular importance for flame stability. A negative azimuthal vorticity gradient decelerates the core flow and finally causes vortex breakdown. Based on fundamental fluid mechanics, guidelines for a proper aerodynamic design of gas turbine combustors are given. These guidelines summarize the experience from several previous aerodynamic and combustion studies of the authors.

1.
Lieuwen
,
T.
,
McDonell
,
V.
,
Santavicca
,
D.
, and
Sattelmayer
,
T.
, 2008, “
Burner Development and Operability Issues Associated With Steady Flowing Syngas Fired Combustors
,”
Combust. Sci. Technol.
0010-2202,
180
, pp.
1169
1192
.
2.
Eichler
,
C.
, and
Sattelmayer
,
T.
, 2010, “
Experiments on Flame Flashback in a Quasi-2D Turbulent Wall Boundary Layer for Premixed Methane-Hydrogen-Air Mixtures
,”
ASME
Paper No. GT2010–23401.
3.
Kröner
,
M.
,
Sattelmayer
,
T.
,
Fritz
,
J.
,
Kiesewetter
,
F.
, and
Hirsch
,
C.
, 2007, “
Flame Propagation in Swirling Flows–Effect of Local Extinction on the Combustion Induced Vortex Breakdown
,”
Combust. Sci. Technol.
0010-2202,
179
, pp.
1385
1416
.
4.
Fritz
,
J.
,
Kröner
,
M.
, and
Sattelmayer
,
T.
, 2004, “
Flashback in a Swirl Burner With Cylindrical Premixing Zone
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
2
), pp.
276
283
.
5.
Heeger
,
C.
,
Gordon
,
R.
,
Dreizler
,
A.
,
Konle
,
M.
, and
Sattelmayer
,
T.
, 2009, “
Experimental Investigation of Stability Limits and Upstream Flame propagation in a Lean Premixed, Swirled Annular Slot Burner
,”
Proceedings of International Colloquium on the Dynamics of Explosions and Reactive Systems
, Minsk, Belarus.
6.
Lucca-Negro
,
O.
, and
O’Doherty
,
T.
, 2001, “
Vortex Breakdown: A Review
,”
Prog. Energy Combust. Sci.
0360-1285,
27
, pp.
431
481
.
7.
Delery
,
J.
, 1994, “
Aspects of Vortex Breakdown
,”
Prog. Aerosp. Sci.
0376-0421,
30
, pp.
1
59
.
8.
Leibovich
,
S.
, 1978, “
The Structure of Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
0066-4189,
10
, pp.
221
246
.
9.
Leibovich
,
S.
, 1984, “
Vortex Stability and Breakdown: Survey and Extension
,”
AIAA J.
0001-1452,
22
, pp.
1192
1206
.
10.
Syred
,
N.
, and
Beer
,
J.
, 1974, “
Combustion in Swirling Flows—A Review
,”
Combust. Flame
0010-2180,
23
, pp.
143
201
.
11.
Ishizuka
,
S.
, 2002, “
Flame Propagation Along a Vortex Axis
,”
Prog. Energy Combust. Sci.
0360-1285,
28
, pp.
477
542
.
12.
Renard
,
P.
,
Thevenin
,
D.
,
Rolon
,
J.
, and
Candel
,
S.
, 2000, “
Dynamics of Flame/Vortex Interactions
,”
Prog. Energy Combust. Sci.
0360-1285,
26
, pp.
225
282
.
13.
Sarpkaya
,
T.
, 1974, “
Effect of the Adverse Pressure Gradient on Vortex Breakdown
,”
AIAA J.
0001-1452,
12
, pp.
602
607
.
14.
Pope
,
S.
, 2000,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
.
15.
Darmofal
,
D.
, 1993, “
The Role of Vorticity Dynamics in Vortex Breakdown
,”
AIAA 24th Fluid Dynamics Conference
, Vol.
93–3036
, pp.
1
14
.
16.
Johnson
,
R. W.
, 1998,
The Handbook of Fluid Dynamics
,
CRC
,
Boca Raton, FL
.
17.
Panton
,
R. L.
, 2005,
Incompressible Flow
,
Wiley
,
New York
.
18.
Hasegawa
,
T.
,
Nishik
,
S.
, and
Michikami
,
S.
, 2001, “
Mechanism of Flame Propagation Along a Vortex Tube
,”
IUTAM Symposium on Geometry and Statistics of Turbulence
, Vol.
200
, pp.
235
240
.
19.
Greitzer
,
E.
,
Tan
,
C.
, and
Graf
,
M.
, 2004,
Internal Flow—Concepts and Applications
,
Cambridge University Press
,
Cambridge
.
20.
Kiesewetter
,
F.
,
Konle
,
M.
, and
Sattelmayer
,
T.
, 2007, “
Analysis of Combustion Induced Vortex Breakdown Driven Flame Flashback in a Premix Burner With Cylindrical Mixing Zone
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
929
936
.
21.
Rusak
,
Z.
,
Kapila
,
A.
, and
Choi
,
J.
, 2002, “
Effect of Combustion on Near-Critical Swirling Flow
,”
Combust. Theory Modell.
1364-7830,
6
, pp.
625
645
.
22.
Bird
,
R.
,
Stewart
,
W.
, and
Lightfoot
,
E.
, 1960,
Transport Phenomena
,
Wiley
,
New York
.
23.
Sherman
,
F.
, 1990,
Viscous Flow
,
McGraw-Hill
,
New York
.
24.
Weimer
,
M.
, 1997, “
Aufplatzen freier Wirbel und drallbehafteter Rohrströmungen
,” Ph.D. thesis, RWTH Aachen University, Aachen.
25.
Brown
,
G.
, and
Lopez
,
J.
, 1990, “
Axisymmetric Vortex Breakdown Part 2: Physical Mechanisms
,”
J. Fluid Mech.
0022-1120,
221
, pp.
553
567
.
26.
Althaus
,
W.
,
Krause
,
E.
,
Hofhaus
,
J.
, and
Weimer
,
M.
, 1994, “
Vortex Breakdown: Transition Between Bubble- and Spiral-Type Breakdown
,”
Meccanica
0025-6455,
29
, pp.
373
382
.
27.
Beran
,
P.
, and
Culick
,
F.
, 1992, “
The Role of Non-Uniqueness in the Development of Vortex Breakdown in Tubes
,”
J. Fluid Mech.
0022-1120,
242
, pp.
491
527
.
28.
Grabowski
,
W.
, and
Berger
,
S.
, 1976, “
Solutions of the Navier–Stokes Equations for Vortex Breakdown
,”
J. Fluid Mech.
0022-1120,
75
, pp.
525
545
.
29.
Burmberger
,
S.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
, 2006, “
Designing a Radial Swirler Vortex Breakdown Burner
,”
ASME
Paper No. GT2006-90497.
30.
Burmberger
,
S.
, 2009, “
Optimierung der aerodynamischen Flammenstabilisierung für brennstoffflexible, vorgemischte Gasturbinenbrenner
,” Ph.D. thesis, Technische Universität München, München.
31.
Sangl
,
J.
,
Mayer
,
C.
, and
Sattelmayer
,
T.
, 2010, “
Dynamic Adaptation of Aerodynamic Flame Stabilization of a Premix Swirl Burner to Fuel Reactivity Using Fuel Momentum
,”
ASME
Paper No. GT2010-22340.
You do not currently have access to this content.