This work aims at estimating the efficiency gain resulting from using lean premixed combustors in hydrogen-fired combined cycles with respect to diffusive flame combustors with significant inert dilution to limit NOx emissions. The analysis is carried out by considering a hydrogen-fired, specifically tailored gas turbine whose features are representative of a state-of-the-art natural gas–fired F-class gas turbine. The comparison between diffusion flame and lean premixed combustion is carried out considering nitrogen and steam as diluents, as well as different stoichiometric flame temperatures and pressure drops. Results show that the adoption of lean premixed combustors allows us to significantly reduce the efficiency decay resulting from inert dilution. Combined cycle efficiency slightly reduces from 58.5%–57.9% when combustor pressure drops vary in the range 3%–10%. Such efficiency values are comparatively higher than those achieved by diffusive flame combustor with inert dilution. Finally, the study investigated the effects of decreasing the maximum operating blade temperature so as to cope with possible degradation mechanisms induced by hydrogen combustion.

References

1.
Chiesa
,
P.
, and
Lozza
,
G.
,
2005
, “
Using Hydrogen as a Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
81
.10.1115/1.1787513
2.
Oluyede
,
E. O.
, and
Phillips
,
J. N.
,
2007
, “
Fundamental Impact of Firing Syngas in Gas Turbines
,”
ASME
Paper No. GT2007-27385.10.1115/GT2007-27385
3.
Sabau
,
A. S.
, and
Wright
,
I. G.
,
2009
, “
The Effects of Changing Fuels on Hot Gas Path Conditions in Syngas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
131
(
4
), p.
044501
.10.1115/1.3028566
4.
Poyyapakkam
,
M.
,
Wood
,
J.
,
Mayers
,
S.
,
Ciani
,
A.
,
Guethe
,
F.
, and
Syed
,
K.
,
2012
, “
Hydrogen Combustion Within a Gas Turbine Reheat Combustor
,”
ASME
Paper No. GT2012-69165.10.1115/GT2012-69165
5.
Bradley
,
T.
, and
Marra
,
J.
,
2012
, “
Advanced Hydrogen Turbine Development Update
,”
ASME
Paper No. GT2012-6816910.1115/GT2012-68169.
6.
York
,
W. D.
,
Zimibsky
,
W. S.
, and
Yilmaz
,
E.
,
2012
, “
Development and Testing of a Low NOx Hydrogen Combustion System for Heavy Duty Gas Turbines
,”
ASME
Paper No. GT2012-69913.10.1115/GT2012-69913
7.
Dennis
,
R. D.
,
Shelton
,
W. W.
, and
Le
,
P.
,
2007
, “
Development of Baseline Performance Values for Turbines in Existing IGCC Applications
,”
ASME
Paper No. GT2007-2809610.1115/GT2007-28096.
8.
Cocchi
,
S.
, and
Sigali
,
S.
,
2010
, “
Development of a Low-NOX Hydrogen-Fuelled Combustor for 10 MW Class Gas Turbines
,”
ASME
Paper No. GT2010-23348.10.1115/GT2010-23348
9.
Cheng
,
R.
,
2008
, “
Adaption of the Low-Swirl Burner Technology for Syngas and H2 Gas Turbines
,”
Proceedings of the Future of Gas Turbine Technology: 4th International Conference
, Brussels, Belgium, October 15–16.
10.
Weiland
,
N.
,
Sidwell
,
T.
, and
Strakey
,
P.
,
2011
, “
Testing of a Hydrogen Dilute Diffusion Array Injector at Gas Turbine Conditions
,”
ASME
Paper No. GT2011-46596.10.1115/GT2011-46596
11.
Lee
,
H.
,
Hernandez
,
S.
,
McDonnell
, V
.
,
Steinthorsoon
,
E.
,
Mansour
,
A.
, and
Hollon
,
B.
,
2009
,
Development of Flashback Resistant Low-Emission Micro-Mixing Fuel Injector for 100% Hydrogen and Syngas Fuels
,”
ASME
Paper No. GT2009-5950210.1115/GT2009-59502.
12.
“Advanced IGCC/Hydrogen Gas Turbine Development. Technical Progress Report for Quarterly Period April–June 2006,” October 29,
2012
, http://www.netl.doe.gov/technologies/coalpower/turbines/refshelf/reports/42643%20-%20GE%20H2%20Turbine%20FY06Q3%20Quarterly%20Progress%20Report.PDF
13.
Zhou
,
C.
,
Yu.
,
J.
,
Gong
,
S.
, and
Xu
,
H.
,
2003
, “
Influence of Water Vapor on the High Temperature Oxidation Behavior of Thermal Barrier Coatings
,”
Mater. Sci. Eng., A
,
A348
, pp.
327
332
.10.1016/S0921-5093(02)00742-6
14.
Tsalavoutas
,
A.
,
Kelaidis
,
M.
,
Thoma
,
N.
, and
Mathioudakis
K.
,
2007
, “
Correlations Adaptation for Optimal Emissions Prediction
,”
ASME
Paper No. GT2007-27060.10.1115/GT2007-27060
15.
Döpelheuer
,
A.
, and
Lecht
,
M.
,
1998
, “
Influence of Engine Performance on Emissions Characteristics
,”
RTO AVT Symposium on “Gas Turbine Engine Combustion, Emissions and Alternative Fuels
,” Lisbon, Portugal, October 12–16.
16.
Cocchi
,
S.
,
Provenzale
,
M.
,
Cinti
,
V.
,
Carrai
,
L.
,
Sigali
,
S.
, and
Cappetti
,
D.
,
2008
,”
Experimental Characterization of a Hydrogen Fuelled Combustor With Reduced NOx Emissions for a 10 MW Class Gas Turbine
,”
ASME
Paper No. GT2008-51271.10.1115/GT2008-51271
17.
Chiesa
,
P.
, and
Macchi
,
E.
,
2004
, “
A Thermodynamic Analysis of Different Options to Break 60% Electric Efficiency in Combined Cycle Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
770
785
.10.1115/1.1771684
18.
Jones
,
R.
,
Goldmeer
,
J.
, and
Monatti
,
B.
,
2011
, “
Addressing Gas Turbine Fuel Flexibility
,” GE Energy Report GER4601 rev. B, October 29, 2012, http://www.ge-energy.com/content/multimedia/_files/downloads/Fuel%20Flexibility%20White%20Paper.pdf
You do not currently have access to this content.