Abstract

A simple nondimensional model to describe the flutter onset of two-fin straight labyrinth seals (Corral and Vega, 2018, “Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models—Part I: Theoretical Background,” ASME J. Turbomach., 140(10), p. 121006) is extended to stepped seals. The effect of the axial displacement of the seal is analyzed first in isolation. It is shown that this fundamental mode is always stable. In a second step, the combination of axial and torsion displacements is used to determine the damping of modes with arbitrary torsion centers. It is concluded that the classical Abbot's criterion stating that seals supported on the low-pressure side of the seal are stable provided that natural frequency of the mode is greater than the acoustic frequency breaks down under certain conditions. An analytical expression for the nondimensional work-per-cycle is derived and new nondimensional parameters controlling the seal stability identified. It is finally concluded that the stability of stepped seals can be assimilated to that of a straight through seal if the appropriate distance of the torsion center to the seal is chosen.

References

1.
Chupp
,
R.
,
Hendricks
,
R.
,
Lattime
,
S.
, and
Steinetz
,
B.
,
2006
, “
Sealing in Turbomachinery
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
313
349
.10.2514/1.17778
2.
Alford
,
J. S.
,
1971
, “
Labyrinth Seal Designs Have Benefitted From Development and Service Experience
,”
SAE
Paper No. 710435.10.4271/710435
3.
Alford
,
J. S.
,
1975
, “
Nature, Causes and Prevention of Labyrinth Air Seal Failures
,”
AIAA J. Aircr.
,
12
(
4
), pp.
313
318
.10.2514/3.44449
4.
Lewis
,
D.
,
Platt
,
C.
, and
Smith
,
E.
,
1979
, “
Aeroelastic Instability in f100 Labyrinth Air Seals
,”
AIAA J. Aircr.
,
16
(
7
), pp.
484
490
.10.2514/3.58552
5.
Alford
,
J.
,
1964
, “
Protection of Labyrinth Seals From Flexural Vibration
,”
ASME J. Eng. Gas Turbines Power
,
86
(
2
), pp.
141
147
.10.1115/1.3677564
6.
Alford
,
J.
,
1967
, “
Protecting Turbomachinery From Unstable and Oscillatory Flows
,”
ASME J. Eng. Gas Turbines Power
,
89
(
4
), pp.
513
528
.10.1115/1.3616719
7.
Ehrich
,
F.
,
1968
, “
Aeroelastic Instability in Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
90
(
4
), pp.
369
374
.10.1115/1.3609221
8.
Abbot
,
D. R.
,
1981
, “
Advances in Labyrinth Seal Aeroelastic Instability Prediction and Prevention
,”
ASME J. Eng. Gas Turbines Power
,
103
(
2
), pp.
308
312
.10.1115/1.3230721
9.
Zhuang
,
Q.
,
Bladh
,
R.
,
Munktell
,
E.
, and
Lee
,
Y.
,
2019
, “
Parametric Study on the Aeroelastic Stability of Rotor Seals
,”
J. Glob. Power Propuls. Soc.,
3
, pp.
569
579
.10.33737/jgpps/110751
10.
Hirano
,
T.
,
Guo
,
Z.
, and
Kirk
,
R. G.
,
2005
, “
Application of Computational Fluid Dynamics Analysis for Rotating Machinery—Part II: Labyrinth Seal Analysis
,”
ASME J. Eng. Gas Turbines Power
,
127
(
4
), pp.
820
826
.10.1115/1.1808426
11.
Mare
,
L. D.
,
Imregun
,
M.
,
Green
,
J.
, and
Sayma
,
A. I.
,
2010
, “
A Numerical Study on Labyrinth Seal Flutter
,”
ASME J Tribol.
,
132
(
2
), p.
022201
.10.1115/1.3204774
12.
Miura
,
T.
, and
Sakai
,
N.
,
2019
, “
Numerical and Experimental Studies of Labyrinth Seal Aeroelstic Instability
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111005
.10.1115/1.4044353
13.
Corral
,
R.
, and
Vega
,
A.
,
2016
, “
The Low Reduced Frequency Limit of Vibrating Airfoils—Part I: Theoretical Analysis
,”
ASME J. Turbomach
,
138
(
2
), p.
021004
.10.1115/1.4031776
14.
Corral
,
R.
, and
Vega
,
A.
,
2016
, “
Physics of Vibrating Turbine Airfoils at Low Reduced Frequency
,”
AIAA J. Propul. Power
,
32
(
2
), pp.
325
336
.10.2514/1.B35572
15.
Barbarossa
,
F.
,
Parry
,
A. B.
,
Green
,
J. S.
, and
di Mare
,
L.
,
2016
, “
An Aerodynamic Parameter for Low-Pressure Turbine Flutter
,”
ASME J. Turbomach
,
138
(
5
), p.
051001
.10.1115/1.4032184
16.
Corral
,
R.
, and
Vega
,
A.
,
2017
, “
Quantification of the Influence of Unsteady Aerodynamic Loading on the Damping Characteristics of Oscillating Airfoils at Low Reduced Frequency—Part I: Theoretical Support
,”
ASME J. Turbomach.
,
139
(
3
), p.
031009
.10.1115/1.4034976
17.
Vega
,
A.
, and
Corral
,
R.
,
2016
, “
The Low Reduced Frequency Limit of Vibrating Airfoils—Part II: Numerical Experiments
,”
ASME J. Turbomach.
,
128
(
2
), p.
021005
.10.1115/1.4031777
18.
Vega
,
A.
, and
Corral
,
R.
,
2017
, “
Quantification of the Influence of Unsteady Aerodynamic Loading on the Damping Characteristics of Oscillating Airfoils at Low Reduced Frequency—Part II: Numerical Verification
,”
ASME J. Turbomach.
,
139
(
3
), p.
031010
.10.1115/1.4034978
19.
Corral
,
R.
, and
Vega
,
A.
,
2018
, “
Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models—Part I: Theoretical Background
,”
ASME J. Turbomach.
,
140
(
10
), p.
121006
.10.1115/1.4041373
20.
Vega
,
A.
, and
Corral
,
R.
,
2018
, “
Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models—Part II: Physical Interpretation
,”
ASME J. Turbomach.
,
140
(
10
), p.
121007
.10.1115/1.4041377
21.
Corral
,
R.
,
Beloki
,
J.
,
Calza
,
P.
, and
Elliot
,
R.
,
2019
, “
Flutter Generation and Control Using Mistuning in a Turbine Rotating Rig
,”
AIAA J.
,
57
(
2
), pp.
782
795
.10.2514/1.J056943
22.
Corral
,
R.
,
Greco
,
M.
, and
Vega
,
A.
,
2019
, “
Tip-Shroud Labyrinth Seal Impact on the Flutter Stability of Turbine Rotor Blades
,”
ASME J. Turbomach.
,
141
(
10
), p.
101006
.10.1115/1.4043962
You do not currently have access to this content.