Abstract

The wear behaviors of the rectangular labyrinth seal fin against high-speed rotor were experimentally investigated on the incursion test rig. The material losses, worn geometries, frictional temperature distributions, and contact forces of labyrinth fin in rubbing events were measured at three incursion rates, three final incursion depths and two rotor sliding velocities. The morphologies of the worn labyrinth fin tips were magnified to reveal the wear mechanisms in rubbing events. The transient temperatures and contact forces were detailed to analyze the thermal–mechanical interactions between two contacting parts. The results show that the material loss percentage in the labyrinth fin is higher at the early stage of rubbing process, accounting for 18% mass loss of the worn region, than at final stage. The material loss is decreased with increasing the incursion rate. The incursion rate and final incursion depth have pronounced effects on the mushroom region extensions and curlings. The friction coefficient is fluctuated significantly in the high sliding velocity and low incursion rate conditions, and the averaged value of friction coefficient is about 0.1–0.125 among all experiments. The temperature at labyrinth fin tip is increased with increasing the final incursion depth, incursion rate, and sliding velocity. However, the temperature at fin tip is not increased further as it reaches about 1200 °C. The heat convection from hot fin to ambient plays an important role in worn geometries and transient temperature distributions at fin tip.

References

1.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
313
349
.10.2514/1.17778
2.
Steinetz
,
B. M.
,
Hendricks
,
R. C.
, and
Munson
,
J.
,
1998
, “
Advanced Seal Technology Role in Meeting Next Generation Turbine Engine Goals
,” NASA, Washington, DC, Report No.
NASA/TM-1998-206961.
https://ntrs.nasa.gov/citations/20000020798
3.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power
,
22
(
2
), pp.
271
285
.10.2514/1.11818
4.
NASA
,
2004
, “
HPT Clearance Control (Intelligent Engine Systems)-Phase I-Final Report
,” General Electric Aircraft Engines, NASA Langley Research Center, Hampton, VA, Report No. NASA Contract NAS3-01135.
5.
Ghasripoor
,
F.
,
Turnquist
,
N. A.
,
Kowalczyk
,
M.
, and
Couture
,
B.
,
2004
, “
Wear Prediction of Strip Seals Through Conductance
,”
ASME
Paper No. GT2004-53297.10.1115/GT2004-53297
6.
Wilson
,
S.
,
2007
, “
Ensuring Tight Seals
,”
Sulzer Tech. Rev.
,
89
(
2
), pp.
23
25
(Technical Report, v. 2).
7.
Neef
,
M.
,
Sulda
,
E.
,
Sürken
,
N.
, and
Walkenhorst
,
J.
,
2006
, “
Design Features and Performance Details of Brush Seals for Turbine Applications
,”
ASME
Paper No. GT2006-90404.10.1115/GT2006-90404
8.
Team
,
C. J. J.
,
2014
, Combined Cycle Journal,
CJJ ONsite
,
Las Vegas, NV
, accessed Sept. 10, 2018, http://www.ccj-online.com/501fg-users-benefit-from-presentations-by-non-oem-equipmentservices-providers-1-of-2/
9.
Herrmann
,
N.
,
Dullenkopf
,
K.
, and
Bauer
,
H. J.
,
2013
, “
Flexible Seal Strip Design for Advanced Labyrinth Seals in Turbines
,”
ASME
Paper No. GT2013-95424.10.1115/GT2013-95424
10.
Xu
,
J. M.
,
2016
, “
Effects of Operating Damage of Labyrinth Seal on Seal Leakage and Wheelspace Hot Gas Ingress
,”
Ph.D. thesis
,
Texas A & M University
,
College Station, TX
.https://hdl.handle.net/1969.1/5867
11.
Dogu
,
Y.
,
Sertçakan
,
M. C.
,
Bahar
,
A. S.
,
Pişkin
,
A.
,
Arıcan
,
E.
, and
Kocagül
,
M.
,
2016
, “
Computational Fluid Dynamics Investigation of Labyrinth Seal Leakage Performance Depending on Mushroom-Shaped Tooth Wear
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032503
.10.1115/1.4031369
12.
Chen
,
Y. X.
,
Li
,
Z. G.
,
Yan
,
X.
, and
Li
,
J.
,
2018
, “
Effects of Mushroom-Shaped Tooth Wear on the Leakage Performance and Rotordynamic Coefficients of Labyrinth Seals
,”
ASME
Paper No. GT2018-75147.10.1115/GT2018-75147
13.
Yan
,
X.
,
Lei
,
L. J.
,
Li
,
J.
, and
Feng
,
Z. P.
,
2014
, “
Effect of Bending and Mushrooming Damages on Heat Transfer Characteristic in Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
041901
.10.1115/1.4025899
14.
Fischer
,
T.
,
Welzenbach
,
S.
,
Meier
,
F.
,
Werner
,
E.
,
Ulan Kyzy
,
S.
, and
Munz
,
O.
,
2018
, “
Modeling the Rubbing Contact in Honeycomb Seals
,”
Continuum Mech. Thermodyn.
,
30
(
2
), pp.
381
395
.10.1007/s00161-017-0608-4
15.
Rathmann
,
U.
,
Olmes
,
S.
, and
Simeon
,
A.
,
2007
, “
Sealing Technology: Rub Test Rig for Abrasive/Abradable Systems
,”
ASME
Paper No. GT2007-27724.10.1115/GT2007-27724
16.
Delebarre
,
C.
,
Wagner
,
V.
,
Paris
,
J. Y.
,
Dessein
,
G.
,
Denape
,
J.
, and
Gurt-Santanach
,
J.
,
2014
, “
An Experimental Study of the High Speed Interaction Between a Labyrinth Seal and an Abradable Coating in a Turbo-Engine Application
,”
Wear
,
316
(
1–2
), pp.
109
118
.10.1016/j.wear.2014.04.023
17.
Pychynski
,
T.
,
Höfler
,
C.
, and
Bauer
,
H.-J.
,
2015
, “
Experimental Study on the Friction Contact Between a Labyrinth Seal Fin and a Honeycomb Stator
,”
ASME
Paper No. GT2015-42430.10.1115/GT2015-42430
18.
Hasnedl
,
D.
, and
Epikaridis
,
P.
,
2018
, “
Comparative Study of a Felt Abradable Seal
,”
ASME
Paper No. GT2018-75139.10.1115/GT2018-75139
19.
Hühn
,
L.
,
Munz
,
O.
,
Schwitzke
,
C.
, and
Bauer
,
H.-J.
,
2020
, “
Experimental Investigation on the Rubbing Process of Labyrinth Seals Considering the Material Combination
,”
ASME
Paper No. GT2020-14918.10.1115/GT2020-14918
20.
Munz
,
O.
,
Hühn
,
L.
,
Schwitzke
,
C.
,
Bauer
,
H.-J.
,
Fischer
,
T.
, and
Ulan Kyzy
,
S.
,
2020
, “
Experimental Investigation on the Rubbing Process of Labyrinth Seals Against Honeycomb Liners
,”
ASME
Paper No.GT2020-15935.10.1115/GT2020-15935
21.
Xue
,
W.
,
Gao
,
S.
,
Duan
,
D.
,
Wang
,
L.
,
Liu
,
Y.
, and
Li
,
S.
,
2017
, “
Study on the High-Speed Rubbing Wear Behavior Between Ti6Al4V Blade and Nickel-Graphite Abradable Seal Coating
,”
ASME J. Tribol.
,
139
(
2
), p.
021604
.10.1115/1.4033454
22.
Łabanowski
,
J.
, and
Głowacka
,
M.
,
2011
, “
Heat Tint Colours on Stainless Steel and Welded Joints
,”
Weld. Int.
,
25
(
7
), pp.
509
512
.10.1080/09507116.2010.540837
You do not currently have access to this content.