Abstract
Criteria for assessing high cycle fatigue (HCF) capability are important for transitioning additive repair technologies to turbine engines. By studying the fatigue results of two additive repair technologies on Titanium (Ti) 6Al-4V coupons, acceptable HCF results for repairs can be determined by observing the confidence and reliability of the data compared to baseline results. This document details the steps and philosophies behind fabricating coupons that capture the repair capability. Furthermore, regression analysis as well as investigations of dataset distribution, fractography, and microscopy is necessary to understand repair fatigue behavior. This work provides decision gates with quantifiable metrics for advancing repair techniques.
Issue Section:
Research Papers
References
1.
Ferdous
, M. S.
,
Naka
, K.
,
Makabe
, C.
, and
Miyazaki
, T.
, 2015
, “A Review of Simple Methods for Arresting Crack Growth
,” Adv. Mater. Res.
, 1110
, pp. 185
–190
.10.4028/www.scientific.net/AMR.1110.185
2.
Penaranda
, X.
,
Moralejo
, S.
,
Lamikiz
, A.
, and
Figueras
, J.
, 2017
, “An Adaptive Laser Cladding Methodology for Blade Tip Repair
,” Int. J. Adv. Manuf. Technol.
, 92
(9–12
), pp. 4337
–4343
.10.1007/s00170-017-0500-1
3.
Denkena
, B.
,
Boess
, V.
,
Nespor
, D.
,
Floeter
, F.
, and
Rust
, F.
, 2015
, “Engine Blade Regeneration: A Literature Review on Common Technologies in Terms of Machining
,” Int. J. Adv. Manuf. Technol.
, 81
(5–8
), pp. 917
–924
.10.1007/s00170-015-7256-2
4.
Beck
, J.
,
Brown
, J.
,
Runyon
, B.
, and
Scott-Emuakpor
, O.
, “Probabilistic Study of Integrally Bladed Rotor Blends Using Geometric Mistuning Models
,” AIAA
Paper No. 2017
–0860
.10.2514/6.2017-0860
5.
Huang
, X.
, and
Miglietti
, W.
, 2012
, “Wide Gap Braze Repair of Gas Turbine Blades and Vanes—A Review
,” ASME J. Eng. Gas Turbines Power
, 134
(1
), p. 010801
.10.1115/1.4003962
6.
Su
, C. Y.
,
Chou
, C. P.
,
Wu
, B. C.
, and
Lih
, W. C.
, 1997
, “Plasma Transferred Arc Repair Welding of the Nickel-Base Superalloy in-738 LC
,” J. Mater. Eng. Perform.
, 2020
, 6
(5
), pp. 619
–627
.10.1007/s11665-997-0055-7
7.
Williams
, A. D.
, and
Humphries
, J. L.
, 1998
, “Latest Gas Turbine Repair Techniques Using Laser Technology
,” Proceedings of the International Thermal Spray Conference
, Vol. 2
, Grapevine, TX, Jan. 9–13, pp. 1431
–1435
.10.31399/asm.cp.itsc1998p1431
8.
Gyekenyesi
, A.
,
Shrestha
, S.
,
Kannan
, M.
,
Morscher
, G.
, and
Scott-Emuakpor
, O.
, “Characterization of an Additively Repaired Ti-6Al-4V Alloy
,” ASME
Paper No. GT2019-91781.10.1115/GT2019-91781
9.
Fomichev
, Y. O.
, 2015
, “Reconditioning Gas Turbine Blisks by Electron Beam Welding a Repair Insert
,” Weld. Int.
, 29
(3
), pp. 219
–221
.10.1080/09507116.2014.911423
10.
Engine Structural Integrity Program (ENSIP),
2002
, Military Handbook: MIL HDBK-1783B
, United States Air Force
, Wright-Patterson AFB, OH.11.
ASTM International
, 2016
, “Standard Guide for Directed Energy Deposition of Metals
,” ASTM International, West Conshohocken, PA, Standard No. ASTM F3187-16.12.
Sing
, S.
,
Tey
, C.
,
Tan
, J.
,
Huang
, S.
, and
Yeong
, W. Y.
, 2020
, “3D Printing of Metals in Rapid Prototyping of Biomaterials: Techniques in Additive Manufacturing
,” Rapid Prototyping of Biomaterials
, 2nd ed.,
Roger
Narayan
, ed., Woodhead Publishing
, Sawston, UK, pp. 17
–40
.13.
Caprio
, L.
,
Demir
, A. G.
, and
Previtali
, B.
, 2019
, “Influence of Pulsed and Continuous Wave Emission on Melting Efficiency in Selective Laser Melting
,” J. Mater. Process. Technol.
, 266
, pp. 429
–441
.10.1016/j.jmatprotec.2018.11.019
14.
ASTM International
, 2015
, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials
, ASTM International
, West Conshohocken, PA
, Standard No. ASTM E466-15.15.
Murakami
, Y.
, and
Endo
, T.
, 1980
, “Effect of Small Defects on the Fatigue Strength of Metals
,” Int. J. Fatigue
, 2
(1
), pp. 23
–30
.10.1016/0142-1123(80)90024-9
16.
Kitagawa
, H.
, and
Takahashi
, S.
, 1976
, “Applicability of Fracture Mechanics to Very Small Cracks or the Cracks in the Early Stages
,” Proceedings of Second International Conference on Mechanical Behavior of Materials
, Boston, MA, Aug. 6–20, pp. 627
–631
.17.
El Haddad
, M. H.
,
Topper
, T. H.
, and
Smith
, K. N.
, 1979
, “Prediction of Non Propagating Cracks
,” Eng. Fract. Mech.
, 11
(3
), pp. 573
–584
.10.1016/0013-7944(79)90081-X
18.
Scott-Emuakpor
, O.
,
Runyon
, B.
,
George
, T.
,
Goldin
, A.
,
Holycross
, C.
,
Sheridan
, L.
,
Celli
, D.
,
Langley
, B.
,
Gillaugh
, D.
,
Kannan
, M.
,
Shrestha
, S.
, and
Gyekenyesi
, A.
, 2020
, “Structural Integrity Assessments for Validating Directed Energy Deposition Repairs of Integrally Bladed Rotor
,” ASME
Paper No. GT2020-14361.10.1115/GT2020-14361
19.
Shrestha
, S.
,
Kannan
, M.
,
Morscher
, G.
,
Gyekenyesi
, A.
, and
Scott-Emuakpor
, O.
, “Analysis of Microstructure and Mechanical Properties of Additive Repaired Ti-6Al-4V by Direct Energy Deposition
,” Mater. Sci. Eng. A
, 806, p. 140604
.10.1016/j.msea.2020.140604
20.
Vander Voort
, G.
, ed., 1996
, “Metallography and Microstructures
,” ASM Handbook
, Vol. 9
, ASM International
, Materials Park, OH
.21.
Sheridan
, L.
,
Gockel
, J.
, and
Scott-Emuakpor
, O.
, 2021
, “Stress-Defect-Life Interactions of Fatigued Additively Manufactured Alloy 718
,” Int. J. Fatigue
, 143
, p. 106033
.10.1016/j.ijfatigue.2020.106033
22.
Upadhyaya
, Y.
, and
Sridhara
, B.
, 2012
, “Fatigue Crack Initiation and Propagation Life Prediction of Materials
,” Proceedings International Conference on Mechanical, Electronics and Mechatronics Engineering
, Bangkok, Thailand, Mar. 17–18, pp. 13
–18
.
23.
Alderliesten
, R.
, 2007
, “Analytical Prediction Model for Fatigue Crack Propagation and Delamination Growth in Glare
,” Int. J. Fatigue
, 29
(4
), pp. 628
–646
.10.1016/j.ijfatigue.2006.07.006
24.
Ibrahim
, M.
, and
Miller
, K. J.
, 1979
, “Determination of Fatigue Crack Initiation Life
,” Fatigue Eng. Mater. Struct.
, 2
(4
), pp. 351
–360
.10.1111/j.1460-2695.1979.tb01093.x
25.
Deng
, G.
,
Nagamoto
, K.
,
Nakano
, Y.
, and
Nakanishi
, T.
, 2009
, “Evaluation of the Effect of Surface Roughness on Crack Initiation Life
,” 12th International Conference on Fracture
, (ICF12
), Ottawa, Canada, July 12–17.
Copyright © 2021 by ASME
You do not currently have access to this content.