Abstract

The geared turbofan technology is one essential way to reduce the fuel consumption, the environmental footprint, and the noise pollution of civil aircrafts. An added gearbox between the fan and the low-pressure compressor that reduces the fan speed, which allows higher bypass ratios, achieves the mentioned benefits of geared turbofans. To withstand the high mechanical loads, large double helical gears are used. Gear hobbing and gear grinding require large tool maneuvering spaces. This leads to a larger required space between the single gears of the double helical gear. As a result, the gears are larger and heavier, which lead to a reduced economy of the aircraft. The tool maneuvering space of five-axis milling with solid carbide end mills is much smaller. This enables the design of smaller, lighter, and more efficient aircraft engines. However, manufacturing these gears in tolerances better than IT5 is very challenging on five-axis milling machine tools. This paper presents investigations about finish machining of hardened gears on five-axis machine tools. In the investigations performed, varying tool substrates and tool coatings have been investigated together with tool travel paths in order to reduce the tool wear, which is key to achieve the demanded tolerances. Finally, the five-axis milled gears were compared to conventionally manufactured gears on test benches to enable statements regarding the expectable service lives of the manufactured gears.

References

1.
Kurzke
,
J.
,
2009
, “
Fundamental Differences Between Conventional and Geared Turbofans
,”
ASME
Paper No. GT2009-59745.10.1115/GT2009-59745
2.
Hughes
,
C.
,
2010
, “Geared Turbofan Technology,”
NASA Environmentally Responsible Aviation Project: Green Aviation Summit
, Moffett Field, CA, Sept.
8
9
.https://flight.nasa.gov/pdf/hughes_green_aviation_summit.pdf
3.
MTU
,
2012
, “High-Tech Made by MTU,”
MTU Aero Engines
, Munich, Germany, pp.
1
20
.https://www.mtu.de/fileadmin/EN/7_News_Media/2_Media/Brochures/Technology/01_High-tech_made_by_MTU.pdf
4.
Sato
,
A.
,
Imamura
,
M.
, and
Fujimura
,
T.
,
2014
, “
Development of PW1100G-JM Turbofan Engine
,”
IHI Eng. Rev.
,
47
(
1
), pp.
23
28
.https://www.ihi.co.jp/var/ezwebin_site/storage/original/application/b2153d6b4a59e36870a3c642bd26d313.pdf
5.
Hou
,
L.
, and
Cao
,
S.
,
2019
, “
Nonlinear Dynamic Analysis on Planetary Gears-Rotor System in Geared Turbofan Engines
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
29
(
6
), p.
1950076
.10.1142/S0218127419500767
6.
MTU
,
2020
, “Pratt & Whitney GTF Engines,” MTU Aero Engines, Munich, Germany.
7.
Malek
,
O.
,
Mielnik
,
K.
,
Martens
,
K.
,
Jacobs
,
T.
,
Bouquet
,
J.
,
Auwers
,
W.
,
Ten Haaf
,
P.
, and
Lauwers
,
B.
,
2016
, “
Lead Time Reduction by High Precision 5-Axis Milling of a Prototype Gear
,”
Procedia CIRP
,
46
, pp.
440
443
.10.1016/j.procir.2016.04.051
8.
Solf
,
M.
,
Klocke
,
F.
,
Löpenhaus
,
C.
, and
Staudt
,
J.
,
2017
, “Auswirkungen der Bauteileigenschaften 5-Achs-gefräster Stirnräder auf die Tragfähigkeit,” GETPRO Kongress, Würzburg, Germany, Mar.
28
29
.
9.
DMG America Inc.
,
2009
, “
Gear Milling on Non-Gear Dedicated Machinery
,”
Gear Technol.
, 26(4), pp.
14
16
.
10.
Alvarez
,
A.
,
Lopez de Lacalle
,
L. N.
,
Olaiz
,
A.
, and
Rivero
,
A.
,
2015
, “
Large Spiral Bevel Gears on Universal 5-Axis Milling Machines
,”
Procedia Eng.
,
132
, pp.
397
404
.10.1016/j.proeng.2015.12.511
11.
Staudt
,
J.
,
2015
, “5-Achs-Fräsen von Verzahnungen Technologische Herausforderungen bei der Hartbearbeitung,” Seminar Feinbearbeitung von Zahnrädern, Aachen, Germany, Nov.
21
22
.
12.
Staudt
,
J.
,
Klocke
,
F.
, and
Löpenhaus
,
C.
,
2015
, “
Compensation of Geometric Deviations in 5-Axis-Milling of Gears
,”
International Conference on Gears
, Munich, Germany, Oct.
5
6
.http://publications.rwthaachen.de/record/657591
13.
Klocke
,
F.
,
Brumm
,
M.
, and
Staudt
,
J.
,
2015
, “
Quality and Surface of Gears Manufactured by Free-Form Milling With Standard Tools
,”
Gear Technol.
, 32(1), pp.
64
69
.10.1533/9781782421955.506
14.
Li
,
W.
,
Guo
,
Y. B.
,
Barkey
,
M. E.
,
Guo
,
C.
, and
Liu
,
Z. Q.
,
2011
, “
Surface Integrity and Fatigue Strength of Hard Milling Surfaces
,”
ASME
Paper No. MSEC2011-50282.10.1115/MSEC2011-50282
15.
Li
,
W.
, and
Guo
,
Y. B.
,
2012
, “
Residual Stress and Fatigue Properties of AISI H13 Steel by Sustainable Dry Milling
,”
ASME
Paper No. MSEC2012-7363.10.1115/MSEC2012-7363
16.
Staudt
,
J.
,
Klocke
,
F.
, and
Löpenhaus
,
C.
,
2017
, “
Performance of Gears Manufactured by 5-Axis Milling
,”
Gear Technol.
,
34
(
2
), pp.
58
65
.https://www.semanticscholar.org/paper/Performance-of-Gears-Manufactured-by-5-Axis-Milling-Staudt-L%C3%B6penhaus/02d61fc4e52f538bbf3fc724a0d3d320c5378843
17.
Klocke
,
F.
,
2018
,
Fertigungsverfahren 1—Zerspanung mit geometrisch bestimmter Schneide
,
Springer Vieweg Verlag
,
Heidelberg, Germany
.
18.
Gerschwiler
,
K.
,
1998
, “
Untersuchungen zum Verschleißverhalten von Cermets beim Drehen und Fräsen
,” Ph.D. thesis,
RWTH Aachen University
, Aachen, Germany.
19.
Choudhury
,
S. K.
, and
Chinchanikar
,
S.
,
2017
, “
Finish Machining of Hardened Steel
,”
Compr. Mater. Finish.
,
1
, pp.
47
92
.10.1016/B978-0-12-803581-8.09149-9
20.
Reznits⌢kiĭ
,
L. M.
,
1960
, “The Machining of Hardened Steels,” Wright-Patterson Air Force Base, OH.
21.
Klocke
,
F.
,
2011
,
Manufacturing Processes 1: Cutting
,
Springer Verlag
,
Heidelberg, Germany
.
22.
Lai
,
Z.
,
Wang
,
C.
,
Zheng
,
L.
,
Huang
,
W.
,
Yang
,
J.
,
Guo
,
G.
, and
Xiong
,
W.
,
2020
, “
Adaptability of AlTiN-Based Coated Tools With Green Cutting Technologies in Sustainable Machining of 316 L Stainless Steel
,”
Tribol. Int.
,
148
, p.
106300
.10.1016/j.triboint.2020.106300
23.
de Aguiar
,
M. M.
,
Diniz
,
E. A.
, and
Robson
,
P.
,
2013
, “
Correlating Surface Roughness, Tool Wear and Tool Vibration in the Milling Process of Hardened Steel Using Long Slender Tools
,”
Int. J. Mach. Tools Manuf.
,
68
, pp.
1
10
.10.1016/j.ijmachtools.2013.01.002
24.
Song
,
C.
, and
Aoyama
,
H.
,
2008
, “
Development of CAM System to Estimate Tool Wear of Ball-End-Milling
,”
Manufacturing Systems and Technologies for the New Frontier
,
Springer
,
London, UK
.
25.
Albrecht
,
P.
,
1960
, “
New Developments in the Theory of the Metal-Cutting Process
,”
J. Eng. Ind.
,
82
(
4
), pp.
348
358
.10.1115/1.3664242
26.
Wojciechowski
,
S.
,
Maruda
,
R. W.
,
Barrans
,
S.
,
Nieslony
,
P.
, and
Krolczyk
,
G. M.
,
2017
, “
Optimisation of Machining Parameters During Ball End Milling of Hardened Steel With Various Surface Inclinations
,”
Measurement
,
111
, pp.
18
28
.10.1016/j.measurement.2017.07.020
27.
Amin
,
A. K. M. N.
,
Dolah
,
S. B.
,
Mahmud
,
M. B.
, and
Lajis
,
M. A.
,
2008
, “
Effects of Workpiece Preheating on Surface Roughness, Chatter and Tool Performance During End Milling of Hardened Steel D2
,”
J. Mater. Process. Technol.
,
201
(
1–3
), pp.
466
470
.10.1016/j.jmatprotec.2007.11.304
28.
Arruda
,
É. M.
,
de Paiva
,
A. P.
,
Brandão
,
L. C.
, and
Ferreira
,
J. R.
,
2019
, “
Robust Optimisation of Surface Roughness of AISI H13 Hardened Steel in the Finishing Milling Using Ball Nose End Mills
,”
Precis. Eng.
,
60
, pp.
194
214
.10.1016/j.precisioneng.2019.07.013
29.
VDI/VDE Richtlinien
,
2015
, “Measurement and Testing of Gearings,” VDI/VDE Richtlinien, Düsseldorf, Germany, Standard No. VDI/VDE 2612.
30.
Schlattmeier
,
H.
,
2003
, “
Diskontinuierliches Zahn-flankenprofilschleifen mit Korund
,” Ph.D. thesis,
RWTH Aachen University
, Aachen, Germany.
31.
Reimann
,
J.
,
Klocke
,
F.
,
Brumm
,
M.
,
Mehr
,
A.
, and
Finkenwirth
,
K.
,
2014
, “
Technological Potential and Performance of Gears Ground by Dressable CBN Tools
,”
Gear Technol.
, 31(2), pp.
54
59
.https://www.semanticscholar.org/paper/Technological-Potential-and-Performance-of-Gears-by-Reimann-Finkenwirth/70f5e7c6f74543483ba1aee5065bbd2c93ff26e8
32.
Borchers
,
F.
,
2020
, “
Diskontinuierliches Zahnflanken-profilschleifen zur Erreichung höchster Oberflächengüten und Verzahnungsqualitäten
,” Project Superfinishing II, FVA, Frankfurt, Germany, Final Report No. FVA 654.
33.
Amores
,
J.
,
2016
, “Design of Experiments to Optimize Design Solutions for a Power Reduction Gearbox,” Cordis, Mendaro, Spain, Final Report No.
641542
.https://cordis.europa.eu/project/id/641542
34.
Löpenhaus
,
C.
,
2016
, “
Einfluss der 5-Achs-Bearbeitung auf das Einsatzverhalten von Verzahnungen
,” Project Flexgear, FVA, Frankfurt, Germany, Final Report No. FVA 708.
35.
International Standard
,
2000
, “Gears—FZG Test Procedures Part 1: FZG Test Method A/8,3/90 for Relative Scuffing Load-Carrying Capacity of Oils,” ISO, Geneva, Switzerland, Standard No. ISO 14635.
36.
FVA,
1993
, “Test Procedure for the Investigation of the Micro-Pitting Capacity of Gear Lubricants,” FVA, Frankfurt, Germany, FVA Information Sheet No. 54/7.
37.
DGMK
,
2002
, “
DGMK Research Project No. 575. Short Test Procedure for the Investigation of the Micro-Pitting Load Capacity of Gear Lubricants
,” DGMK, Hamburg, Germany, DGMK Information Sheet No. 17/02.
38.
Brecher
,
C.
,
Löpenhaus
,
C.
, and
Greschert
,
R.
,
2019
, “
Influence of the Metalworking Fluid on the Micropitting Wear of Gears
,”
Wear
,
434–435
, p.
202996
.10.1016/j.wear.2019.202996
39.
Ziegltrum
,
A.
,
Emrich
,
S.
,
Lohner
,
T.
,
Michaelis
,
K.
,
Brodyanski
,
A.
,
Merz
,
R.
,
Kopnarski
,
M.
,
Hoehn
,
B.-R.
, and
Stahl
,
K.
,
2019
, “
Influence of Tribofilms on Failures and Friction of Gears With Particular Focus on Running-In
,”
Ind. Lubr. Tribol.
,
71
(
8
), pp.
1017
1026
.10.1108/ILT-09-2018-0356
You do not currently have access to this content.