Abstract

This study reports an experimental work on friction contact between the chamfered labyrinth fin and high speed rotor at different incursion rates, final incursion depths, and sliding velocities. The small (original design case) and large specimens were selected to quantify the geometrical impact on the mass loss, plastic deformation, wear pattern, contact forces, and frictional temperature variations in the chamfered labyrinth fins. The results show that the contact-separations and contact force fluctuations are generated in rubbing events, which significantly affect the wear characteristics, contact forces, and temperature distributions for the small and large specimens. The abrasive and oxidation wears have pronounced influence on the wear behaviors of the tested specimen. At the same incursion condition, the mass loss percentages for the large specimen and small specimen are almost identical. As the sliding velocity increases from 55 m/s to 110 m/s, the mass loss percentage is decreased by 12–36%. For the large specimen, the mushrooming damage is mainly generated in the fin tip. The averaged frictional coefficient is 0.08–0.17, and the maximum temperature in the contact region is 640–700 °C. For the small specimen, the combined mushrooming and bending damage is generated in the labyrinth fin tip. The averaged frictional coefficient is 0.13–0.25, and the maximum temperature is 560–600 °C in the contact region. Due to the increased elasticity for the small specimen, the temperature fluctuation in the rubbing event is not as significant as the large one.

References

1.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
313
349
.10.2514/1.17778
2.
Wilson
,
S.
,
2007
, “
Ensuring Tight Seals
,”
Sulzer Tech. Rev.
,
89
(
2
), pp.
23
25
.
3.
Pawsey
,
L.
,
Rajendran
,
D. J.
, and
Pachidis
,
V.
,
2017
, “
Aerodynamic Performance of an Unlocated High Pressure Turbine Rotor With Worn Tip Seal Fins
,”
ASME
Paper No. GT2017-64312.10.1115/GT2017-64312
4.
Szymański
,
A.
,
Wróblewski
,
W.
,
Frączek
,
D.
,
Bochon
,
K.
,
Dykas
,
S.
, and
Marugi
,
K.
,
2018
, “
Optimization of the Straight-Through Labyrinth Seal With a Smooth Land
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
122503
.10.1115/1.4040767
5.
Xu
,
J. M.
,
2016
, “
Effects of Operating Damage of Labyrinth Seal on Seal Leakage and Wheelspace Hot Gas Ingress
,”
Ph.D. thesis
,
Texas A & M University
,
College Station, TX
.https://hdl.handle.net/1969.1/5867
6.
Pychynski
,
T.
,
Dullenkopf
,
K.
, and
Bauer
,
H.-J.
,
2013
, “
Theoretical Study on the Origin of Radial Cracks in Labyrinth Seal Fins Due to Rubbing
,”
ASME
Paper No. GT2013-94834.10.1115/GT2013-94834
7.
Herrmann
,
N.
,
Dullenkopf
,
K.
, and
Bauer
,
H.-J.
,
2013
, “
Flexible Seal Strip Design for Advanced Labyrinth Seals in Turbines
,”
ASME
Paper No. GT2013-95424.10.1115/GT2013-95424
8.
Fischer
,
T.
,
Welzenbach
,
S.
,
Meier
,
F.
,
Werner
,
E.
,
Ulan Kyzy
,
S.
, and
Munz
,
O.
,
2018
, “
Modeling the Rubbing Contact in Honeycomb Seals
,”
Continuum Mech. Thermodyn.
,
30
(
2
), pp.
381
395
10.1007/s00161-017-0608-4
9.
Ghasripoor
,
F.
,
Turnquist
,
N. A.
,
Kowalczyk
,
M.
, and
Couture
,
B.
,
2004
, “
Wear Prediction of Strip Seals Through Conductance
,”
ASME
Paper No. GT2004-53297.10.1115/GT2004-53297
10.
Rathmann
,
U.
,
Olmes
,
S.
, and
Simeon
,
A.
,
2007
, “
Sealing Technology: Rub Test Rig for Abrasive/Abradable Systems
,”
ASME
Paper No. GT2007-27724.10.1115/GT2007-27724
11.
Whalen
,
J. K.
,
Alvarez
,
E.
, and
Palliser
,
L. P.
,
2014
, “
Thermoplastic Labyrinth Seals for Centrifugal Compressors
,”
Proceedings of the Thirty-Third Turbomachinery Symposium
, College Station, TX, Sept. 20–23, pp.
113
126
.https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/163245/t33-14.pdf
12.
Delebarre
,
C.
,
Wagner
,
V.
,
Paris
,
J. Y.
,
Dessein
,
G.
,
Denape
,
J.
, and
Gurt-Santanach
,
J.
,
2014
, “
An Experimental Study of the High Speed Interaction Between a Labyrinth Seal and an Abradable Coating in a Turbo-Engine Application
,”
Wear
,
316
(
1–2
), pp.
109
118
.10.1016/j.wear.2014.04.023
13.
Pychynski
,
T.
,
Höfler
,
C.
, and
Bauer
,
H.-J.
,
2016
, “
Experimental Study on the Friction Contact Between a Labyrinth Seal Fin and a Honeycomb Stator
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
)p.
062501
.10.1115/1.4031791
14.
Hasnedl
,
D.
, and
Epikaridis
,
P.
,
2018
, “
Comparative Study of a Felt Abradable Seal
,”
ASME
Paper No. GT2018-75139.10.1115/GT2018-75139
15.
Hühn
,
L.
,
Munz
,
O.
,
Schwitzke
,
C.
, and
Bauer
,
H.-J.
,
2021
, “
Experimental Investigation on the Rubbing Process of Labyrinth Seals Considering the Material Combination
,”
ASME J. Turbomach.
,
143
(
11
), p.
111006
.10.1115/1.4051166
16.
Munz
,
O.
,
Hühn
,
L.
,
Schwitzke
,
C.
,
Bauer
,
H.-J.
,
Fischer
,
T.
, and
Ulan Kyzy
,
S.
,
2020
, “
Experimental Investigation on the Rubbing Process of Labyrinth Seals Against Honeycomb Liners
,”
ASME
Paper No. GT2020-15935.10.1115/GT2020-15935
17.
Dogu
,
Y.
,
Sertçakan
,
M. C.
,
Bahar
,
A. S.
,
Pişkin
,
A.
,
Arıcan
,
E.
, and
Kocagül
,
M.
,
2016
, “
Computational Fluid Dynamics Investigation of Labyrinth Seal Leakage Performance Depending on Mushroom-Shaped Tooth Wear
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032503
.10.1115/1.4031369
18.
Yan
,
X.
,
Lei
,
L. J.
,
Li
,
J.
, and
Feng
,
Z. P.
,
2014
, “
Effect of Bending and Mushrooming Damages on Heat Transfer Characteristic in Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
041901
.10.1115/1.4025899
19.
Yan
,
X.
, and
Dai
,
X.
,
2019
, “
Effects of Labyrinth Fin Wear on Aerodynamic Performance of Turbine Stages: Part I-Bending Damages
,”
ASME
Paper No. GT2019-90152.10.1115/GT2019-90152
20.
Dai
,
X.
, and
Yan
,
X.
,
2019
, “
Effects of Labyrinth Fin Wear on Aerodynamic Performance of Turbine Stages: Part II-Mushrooming Damages
,”
ASME
Paper No. GT2019-90153.10.1115/GT2019-90153
21.
Chen
,
Y. X.
,
Li
,
Z. G.
,
Yan
,
X.
, and
Li
,
J.
,
2018
, “
Effects of Mushroom-Shaped Tooth Wear on the Leakage Performance and Rotordynamic Coefficients of Labyrinth Seals
,”
ASME
Paper No. GT2018-75147.10.1115/GT2018-75147
22.
Dai
,
X.
,
Yan
,
X.
,
He
,
K.
,
Li
,
J.
, and
Feng
,
Z. P.
,
2021
, “
Numerical Investigations of Leakage Performance Degradations in Labyrinth and Flexible Seals Due to Wear
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051003
.10.1115/1.4049008
23.
Łabanowski
,
J.
, and
Głowacka
,
M.
,
2011
, “
Heat Tint Colours on Stainless Steel and Welded Joints
,”
Weld. Int.
,
25
(
7
), pp.
509
512
.10.1080/09507116.2010.540837
24.
Xue
,
W.
,
Gao
,
S.
,
Duan
,
D.
,
Wang
,
L.
,
Liu
,
Y.
, and
Li
,
S.
,
2017
, “
Study on the High-Speed Rubbing Wear Behavior Between Ti6Al4V Blade and Nickel-Graphite Abradable Seal Coating
,”
ASME J. Tribol.
,
139
(
2
), p.
021604
.10.1115/1.4033454
You do not currently have access to this content.