Abstract

Carbon dioxide is one of the leading contributors to global warming. Oxy-fuel combustion (OFC) integrated with carbon capture and storage (CCS) technology is an efficient way to reduce carbon dioxide emissions. In OFC, pure oxygen (O2) is used instead of air to react with hydrocarbon fuel. Consequently, the products of combustion mainly include carbon dioxide (CO2) and water vapor (H2O) under lean conditions. Meanwhile, due to the absence of N2 in the intake charge, nitrogen-related emissions such as NOx are greatly removed from the exhaust gases. In the present study, the effect of intake charge temperature on OFC has been investigated in a diesel engine under the homogeneous charge compression ignition (HCCI) mode. In order to control combustion temperature and avoid overheating problems caused by oxygen in OFC, a portion of the exhaust CO2 was added to the O2. For this purpose, different CO2 dilutions ranging from 79-85% have been employed. It has been found that OFC can significantly reduce CO and particulate matter (PM) emissions while eliminating NOx emissions. With a higher intake charge temperature, combustion occurs earlier with shorter main stages, reducing the indicated mean effective pressure (IMEP) and increasing the indicated specific fuel consumption (ISFC), whereas, with a lower intake charge temperature, combustion stability deteriorates leading to incomplete OFC. By raising the intake charge temperature from 140 °C to 220 °C and applying 21% O2 and 79% CO2 v/v, the indicated thermal efficiency (ITE) is reduced from 34.6% to 29.2% while ISFC is increased from 0.24 to 0.285 Kg/kWh.

References

1.
Tang
,
B.-J.
,
Guo
,
Y.-Y.
,
Yu
,
B.
, and
Harvey
,
L. D.
,
2021
, “
Pathways for Decarbonizing China's Building Sector Under Global Warming Thresholds
,”
Appl. Energy
,
298
, p.
117213
.10.1016/j.apenergy.2021.117213
2.
Change, IPCC Climate
,
2014
, “Synthesis Report. Contribution of Working Groups I,” II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 151, Report No.
10.1017
.https://www.ipcc.ch/report/ar5/wg3/
3.
Mobasheri
,
R.
, and
Peng
,
Z.
,
2013
, “
The Development and Application of Homogeneity Factor on DI Diesel Engine Combustion and Emissions
,”
SAE
Paper No. 2013-01-0880.10.4271/2013-01-0880
4.
Verichev
,
K.
,
Zamorano
,
M.
, and
Carpio
,
M.
,
2020
, “
Effects of Climate Change on Variations in Climatic Zones and Heating Energy Consumption of Residential Buildings in the Southern Chile
,”
Energy Build.
,
215
, p.
109874
.10.1016/j.enbuild.2020.109874
5.
García
,
A.
,
Monsalve-Serrano
,
J.
,
Lago Sari
,
R.
, and
Tripathi
,
S.
,
2022
, “
Life Cycle CO2 Footprint Reduction Comparison of Hybrid and Electric Buses for Bus Transit Networks
,”
Appl. Energy
,
308
, p.
118354
.10.1016/j.apenergy.2021.118354
6.
Pelletier
,
C.
,
Rogaume
,
Y.
,
Dieckhoff
,
L.
,
Bardeau
,
G.
,
Pons
,
M.-N.
, and
Dufour
,
A.
,
2019
, “
Effect of Combustion Technology and Biogenic CO2 Impact Factor on Global Warming Potential of Wood-to-Heat Chains
,”
Appl. Energy
,
235
, pp.
1381
1388
.10.1016/j.apenergy.2018.11.060
7.
Huang
,
W.
,
Chen
,
W.
, and
Anandarajah
,
G.
,
2017
, “
The Role of Technology Diffusion in a Decarbonizing World to Limit Global Warming to Well Below 2 C: An Assessment With Application of Global TIMES Model
,”
Appl. Energy
,
208
, pp.
291
301
.10.1016/j.apenergy.2017.10.040
8.
Li
,
X.
,
Pei
,
Y.
,
Li
,
D.
,
Ajmal
,
T.
,
Aitouche
,
A.
,
Mobasheri
,
R.
, and
Peng
,
Z.
,
2021
, “
Implementation of Oxy-Fuel Combustion (OFC) Technology in a Gasoline Direct Injection (GDI) Engine Fueled With Gasoline–Ethanol Blends
,”
ACS Omega
,
6
(
44
), pp.
29394
29402
.10.1021/acsomega.1c02947
9.
Anwar
,
M. N.
,
Fayyaz
,
A.
,
Sohail
,
N. F.
,
Khokhar
,
M. F.
,
Baqar
,
M.
,
Khan
,
W. D.
,
Rasool
,
K.
,
Rehan
,
M.
, and
Nizami
,
A. S.
,
2018
, “
CO2 Capture and Storage: A Way Forward for Sustainable Environment
,”
J. Environ. Manage.
,
226
, pp.
131
144
.10.1016/j.jenvman.2018.08.009
10.
Wang
,
C.
,
Zhang
,
X.
,
Liu
,
Y.
, and
Che
,
D.
,
2012
, “
Pyrolysis and Combustion Characteristics of Coals in Oxyfuel Combustion
,”
Appl. Energy
,
97
, pp.
264
273
.10.1016/j.apenergy.2012.02.011
11.
Simpson
,
A. P.
, and
Simon
,
A. J.
,
2007
, “
Second Law Comparison of Oxy-Fuel Combustion and Post-Combustion Carbon Dioxide Separation
,”
Energy Convers. Manage.
,
48
(
11
), pp.
3034
3045
.10.1016/j.enconman.2007.06.047
12.
Pei
,
X.
,
He
,
B.
,
Yan
,
L.
,
Wang
,
C.
,
Song
,
W.
, and
Song
,
J.
,
2013
, “
Process Simulation of Oxy-Fuel Combustion for a 300 MW Pulverized Coal-Fired Power Plant Using Aspen Plus
,”
Energy Convers. Manage.
,
76
, pp.
581
587
.10.1016/j.enconman.2013.08.007
13.
Hanak
,
D. P.
,
Powell
,
D.
, and
Manovic
,
V.
,
2017
, “
Techno-Economic Analysis of Oxy-Combustion Coal-Fired Power Plant With Cryogenic Oxygen Storage
,”
Appl. Energy
,
191
, pp.
193
203
.10.1016/j.apenergy.2017.01.049
14.
Wei
,
X.
,
Manovic
,
V.
, and
Hanak
,
D. P.
,
2020
, “
Techno-Economic Assessment of Coal-or Biomass-Fired Oxy-Combustion Power Plants With Supercritical Carbon Dioxide Cycle
,”
Energy Convers. Manage.
,
221
, p.
113143
.10.1016/j.enconman.2020.113143
15.
Biyiklioğlu
,
O.
, and
Tat
,
M. E.
,
2021
, “
Tribological Assessment of NiCr, Al2O3/TiO2, and Cr3C2/NiCr Coatings Applied on a Cylinder Liner of a Heavy-Duty Diesel Engine
,”
Int. J. Eng. Res.
,
22
(
7
), pp.
2267
2280
.10.1177/1468087420930164
16.
Escudero
,
A. I.
,
Espatolero
,
S.
, and
Romeo
,
L. M.
,
2016
, “
Oxy-Combustion Power Plant Integration in an Oil Refinery to Reduce CO2 Emissions
,”
Int. J. Greenhouse Gas Control
,
45
, pp.
118
129
.10.1016/j.ijggc.2015.12.018
17.
European Environment Agency
,
2021
, “Greenhouse Gas Emissions From Transport in Europe,” European Environment Agency, Copenhagen, Denmark, accessed Apr. 29, 2021, https://www.eea.europa.eu/ims/greenhouse-gas-emissions-from-transport
18.
Decan
,
G.
,
Broekaert
,
S.
,
Lucchini
,
T.
,
D'Errico
,
G.
,
Vierendeels
,
J.
, and
Verhelst
,
S.
,
2018
, “
Evaluation of Wall Heat Flux Calculation Methods for CFD Simulations of an Internal Combustion Engine Under Both Motored and HCCI Operation
,”
Appl. Energy
,
232
, pp.
451
461
.10.1016/j.apenergy.2018.09.214
19.
Metz
,
B.
,
Davidson
,
O. R.
,
Bosch
,
P. R.
,
Dave
,
R.
, and
Meyer
,
L. A.
,
2007
, “
Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
,” Cambridge University Press, Cambridge, UK.https://archive.ipcc.ch/publications_and_data/ar4/wg3/en/contents.html
20.
The Interreg North-West Europe
, 2020, “River - Non-Carbon River Boat Powered by Combustion Engines,” Interreg North West Europe (NWE), Lille, France, accessed Apr. 2021, https://www.nweurope.eu/projects/project-search/river-non-carbon-river-boat-powered-by-combustion-engines/
21.
Mobasheri
,
R.
,
Aitouche
,
A.
,
Peng
,
Z.
, and
Li
,
X.
,
2022
, “
A Numerical Study of the Effects of Oxy-Fuel Combustion Under Homogeneous Charge Compression Ignition Regime
,”
Int. J. Eng. Res.
,
23
(
4
), pp.
649
660
.10.1177/1468087421993359
22.
Zheng
,
G.
, and
Peng
,
Z.
,
2021
, “
Life Cycle Assessment (LCA) of BEV's Environmental Benefits for Meeting the Challenge of ICExit (Internal Combustion Engine Exit)
,”
Energy Rep.
,
7
, pp.
1203
1216
.10.1016/j.egyr.2021.02.039
23.
Li
,
X.
,
Peng
,
Z.
,
Pei
,
Y.
,
Ajmal
,
T.
,
Rana
,
K.
,
Aitouche
,
A.
, and
Mobasheri
,
R.
,
2022
, “
Oxy‐Fuel Combustion for Carbon Capture and Storage in Internal Combustion Engines–a Review
,”
Int. J. Energy Res.
,
46
(
2
), pp.
505
522
.10.1002/er.7199
24.
Jordal
,
K.
,
Anheden
,
M.
,
Yan
,
J.
, and
Strömberg
,
L.
,
2005
, “
Oxyfuel Combustion for Coal-Fired Power Generation With CO2 Capture—Opportunities and Challenges
,”
Greenhouse Gas Control Technol.
,
7
, pp.
201
209
.10.1016/B978-008044704-9/50021-5
25.
Buhre
,
B. J.
,
Elliott
,
L. K.
,
Sheng
,
C. D.
,
Gupta
,
R. P.
, and
Wall
,
T. F.
,
2005
, “
Oxy-Fuel Combustion Technology for Coal-Fired Power Generation
,”
Prog. Energy Combust. Sci.
,
31
(
4
), pp.
283
307
.10.1016/j.pecs.2005.07.001
26.
Osman
,
A.
,
2009
, “
Feasibility Study of a Novel Combustion Cycle Involving Oxygen and Water
,”
SAE
Paper No. 01-2808.10.4271/01-2808
27.
Kang
,
Z.
,
Wu
,
Z.
,
Zhang
,
Z.
,
Deng
,
J.
,
Hu
,
Z.
, and
Li
,
L.
,
2017
, “
Study of the Combustion Characteristics of a HCCI Engine Coupled With Oxy-Fuel Combustion Mode
,”
SAE Int. J. Eng.
,
10
(
3
), pp.
908
916
.10.4271/2017-01-0649
28.
Li
,
X.
,
Peng
,
Z.
,
Ajmal
,
T.
,
Aitouche
,
A.
,
Mobasheri
,
R.
,
Pei
,
Y.
,
Gao
,
B.
, and
Wellers
,
M.
,
2020
, “
A Feasibility Study of Implementation of Oxy-Fuel Combustion on a Practical Diesel Engine at the Economical Oxygen-Fuel Ratios by Computer Simulation
,”
Adv. Mech. Eng.
,
12
(
12
).10.1177/1687814020980182
29.
Yu
,
X.
,
Wu
,
Z.
,
Fu
,
L.
,
Deng
,
J.
,
Hu
,
Z.
, and
Li
,
L.
,
2013
, “
Study of Combustion Characteristics of a Quasi Internal Combustion Rankine Cycle Engine
,”
SAE
Paper No. 2013-01-2698.10.4271/2013-01-2698
30.
Bouillon
,
P.-A.
,
Hennes
,
S.
, and
Mahieux
,
C.
,
2009
, “
ECO2: Post-Combustion or Oxyfuel–A Comparison Between Coal Power Plants With Integrated CO2 Capture
,”
Energy Procedia
,
1
(
1
), pp.
4015
4022
.10.1016/j.egypro.2009.02.207
31.
Telli
,
G. D.
,
Altafini
,
C. R.
,
Costa
,
C. A.
,
Rosa
,
J. S.
,
Martins
,
M. E.
, and
Rocha
,
L. A. O.
,
2021
, “A Comprehensive Review of Homogeneous Charge Compression Ignition (HCCI) Engines: Advantages, Challenges and Evolution,”
SAE
Paper No. 2020-36-0042.10.4271/2020-36-0042
32.
Manual, AVL FIRE User
,
2021
, “
ICE Physics & Chemistry
,” AVL FIRE.2021.1, Graz, Austria.https://www.avl.com/fire
33.
Wang
,
H.
,
Deneys Reitz
,
R.
,
Yao
,
M.
,
Yang
,
B.
,
Jiao
,
Q.
, and
Qiu
,
L.
,
2013
, “
Development of an n-Heptane-n-butanol-PAH Mechanism and Its Application for Combustion and Soot Prediction
,”
Combust. Flame
,
160
(
3
), pp.
504
519
.10.1016/j.combustflame.2012.11.017
34.
Mobasheri
,
R.
, and
Seddiq
,
M.
,
2018
, “Effects of Diesel Injection Parameters in a Heavy Duty Iso-Butanol/Diesel Reactivity Controlled Compression Ignition (RCCI) Engine,”
SAE
Paper No. 2018-01-0197.10.4271/2018-01-0197
35.
Mobasheri
,
R.
,
Aitouche
,
A.
,
Peng
,
Z.
, and
Li
,
X.
,
2020
, “Influence of Oxy-Fuel Combustion on Engine Operating Conditions and Combustion Characteristics in a High Speed Direct Injection (HSDI) Diesel Engine Under Homogenous Charge Compression Ignition (HCCI) mode,”
SAE
Paper No. 2020-01-1138.10.4271/2020-01-1138
36.
Mobasheri
,
R.
,
Aitouche
,
A.
,
Li
,
X.
, and
Peng
,
Z.
,
2022
, “Analysis of the Influence of Inlet Temperature on Oxy-Fuel Combustion in an HSDI Diesel Engine,”
SAE
Paper No. 2022-37-0003.10.4271/2022-37-0003
You do not currently have access to this content.