Abstract

Hybrid-electric propulsion is recognized as an enabling technology for reducing aviation's environmental impact. In this work, a serial/parallel hybrid configuration of a 19-passenger commuter aircraft is investigated. Two underwing-mounted turboprop engines are connected to electrical branches via generators. One rear fuselage-mounted electrically driven ducted fan is coupled with an electric motor and respective electrical branch. A battery system completes the selected architecture. Consistency in modeling accuracy of propulsion systems is aimed for by development of an integrated framework. A multipoint synthesis scheme for the gas turbine and electric fan is combined with physics-based analytical modeling for electrical components. Influence of turbomachinery and electrical power system design points on the integrated power system is examined. An opposing trend between electrical and conventional powertrain mass is driven by electric fan design power. Power system efficiency improvements in the order of 2% favor high-power electric fan designs. A trade-off in electrical power system mass and performance arises from oversizing of electrical components for load manipulation. Branch efficiency improvements of up to 3% imply potential to achieve battery mass reduction due to fewer transmission losses. A threshold system voltage of 1 kV, yielding 32% mass reduction of electrical branches and performance improvements of 1–2%, is identified. This work sets the foundation for interpreting mission-level electrification outcomes that are driven by interactions on the integrated power system. Areas of conflicting interests and synergistic opportunities are highlighted for optimal conceptual design of hybrid powertrains.

References

1.
Krein
,
A.
, and
Williams
,
G.
,
2012
, “
Flightpath 2050: Europe's Vision for Aeronautics
,”
Innovation for Sustainable Aviation in a Global Environment
,
IOS Press
, Luxembourg.https://ebooks.iospress.nl/DOI/10.3233/978-1-61499-063-5-63
2.
Bowman
,
C. L.
,
Felder
,
J. L.
, and
Marien
,
T. V.
,
2018
, “
Turbo-and Hybrid-Electrified Aircraft Propulsion Concepts for Commercial Transport
,” Proceedings of the 2018 AIAA/IEEE Electric Aircraft Technologies Symposium (
EATS
),
Cincinnati, OH
, July 12–14, pp.
1
8
.https://ieeexplore.ieee.org/document/8552831
3.
Isikveren
,
A. T.
,
Seitz
,
A.
,
Bijewitz
,
J.
,
Hornung
,
M.
,
Mirzoyan
,
A.
,
Isyanov
,
A.
,
Godard
,
J.-L.
,
Stückl
,
S.
, and
Toor
,
J. V.
,
2014
,
Proceedings of the 29th Congress of the International Council of the Aeronautical Sciences (ICAS 2014), Recent Advances in Airframe-Propulsion Concepts With Distributed Propulsion
,
Saint-Petersburg
,
Russia
, Sept. 7–12, Paper No. hal-01079572.
4.
Vouros
,
S.
,
Kavvalos
,
M.
,
Sahoo
,
S.
, and
Kyprianidis
,
K.
,
2021
, “
Enabling the Potential of Hybrid Electric Propulsion Through Lean-Burn-Combustion Turbofans
,”
J. Global Power Propul. Soc.
,
5
, pp.
164
176
.10.33737/jgpps/140592
5.
Nasoulis
,
C. P.
,
Gkoutzamanis
,
V. G.
, and
Kalfas
,
A. I.
,
2022
, “
Multidisciplinary Conceptual Design for a Hybrid-Electric Commuter Aircraft
,”
Aeronaut. J.
,
126
(
1302
), pp.
1242
1264
.10.1017/aer.2022.32
6.
Kavvalos
,
M. D.
,
Diamantidou
,
D.-E.
,
Kyprianidis
,
K. G.
,
Claesson
,
J.
, and
Sielemann
,
M.
,
2021
, “
Exploring Design Trade-Offs for Installed Parallel Hybrid Powertrain Systems
,”
AIAA
Paper No. 2021-3314.10.2514/6.2021-3314
7.
Sielemann
,
M.
,
Kavvalos
,
M. D.
,
Selvan
,
N.
,
Claesson
,
J.
, and
Kyprianidis
,
K. G.
,
2022
, “
Select Trade-Offs in Parallel Hybrid Turboprop Cycle Design
,”
ASME
Paper No. GT2022-81629.
8.
Ludowicy
,
J.
,
Rings
,
R.
,
Finger
,
F. D.
, and
Braun
,
C.
,
2018
, “
Sizing Studies of Light Aircraft With Serial Hybrid Propulsion Systems
,” Deutsche Gesellschaft Für Luft-Und Raumfahrt-Lilienthal-Oberth eV, Bonn, Germany.
9.
Kreimeier
,
M.
, and
Stumpf
,
E.
,
2017
, “
Benefit Evaluation of Hybrid Electric Propulsion Concepts for CS-23 Aircraft
,”
CEAS Aeronaut. J.
,
8
(
4
), pp.
691
704
.10.1007/s13272-017-0269-9
10.
Zamboni
,
J.
,
Vos
,
R.
,
Emeneth
,
M.
, and
Schneegans
,
A.
,
2019
, “
A Method for the Conceptual Design of Hybrid Electric Aircraft
,”
AIAA
Paper No. 2019-1587.10.2514/6.2019-1587
11.
Finger
,
D. F.
,
Braun
,
C.
, and
Bil
,
C.
,
2020
, “
Comparative Assessment of Parallel-Hybrid-Electric Propulsion Systems for Four Different Aircraft
,”
J. Aircr.
,
57
(
5
), pp.
843
853
.10.2514/1.C035897
12.
Schäfer
,
A. W.
,
Barrett
,
S. R. H.
,
Doyme
,
K.
,
Dray
,
L. M.
,
Gnadt
,
A. R.
,
Self
,
R.
,
O'Sullivan
,
A.
,
Synodinos
,
A. P.
, and
Torija
,
A. J.
,
2018
, “
Technological, Economic and Environmental Prospects of All-Electric Aircraft
,”
Nat. Energy
,
4
(
2
), pp.
160
166
.10.1038/s41560-018-0294-x
13.
Cinar
,
G.
,
Mavris
,
D. N.
,
Emeneth
,
M.
,
Schneegans
,
A.
,
Riediger
,
C.
,
Fefermann
,
Y.
, and
Isikveren
,
A.
,
2017
, “
Sizing, Integration and Performance Evaluation of Hybrid Electric Propulsion Subsystem Architectures
,”
AIAA
Paper No. 2017-1183.10.2514/6.2017-1183
14.
Cinar
,
G.
,
Cai
,
Y.
,
Bendarkar
,
M. V.
,
Burrell
,
A. I.
,
Denney
,
R. K.
, and
Mavris
,
D. N.
,
2022
, “
System Analysis and Design Space Exploration of Regional Aircraft With Electrified Powertrains
,”
AIAA
Paper No. 2022-1994.10.2514/6.2022-1994
15.
Miyairi
,
Y.
,
Perullo
,
C.
, and
Mavris
,
D. N.
,
2015
, “
A Parametric Environment for Weight and Sizing Prediction of Motor/Generator for Hybrid Electric Propulsion
,”
AIAA
Paper No. 2015-3887.10.2514/6.2015-3887
16.
Pohl
,
M.
,
Köhler
,
J.
,
Kellermann
,
H.
,
Lüdemann
,
M.
,
Weintraub
,
D.
,
Jeschke
,
P.
, and
Hornung
,
M.
,
2022
, “
Preliminary Design of Integrated Partial Turboelectric Aircraft Propulsion Systems
,”
J. Global Power Propul. Soc.
,
6
, pp.
1
23
.10.33737/jgpps/145907
17.
Pallo
,
N.
,
Foulkes
,
T.
,
Modeer
,
T.
,
Coday
,
S.
, and
Pilawa-Podgurski
,
R.
,
2018
, “
Power-Dense Multilevel Inverter Module Using Interleaved GaN-Based Phases for Electric Aircraft Propulsion
,” Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (
APEC
), San Antonio, TX, Mar. 4–8, pp.
1656
1661
.10.1109/APEC.2018.8341239
18.
Sirimanna
,
S.
,
Thanatheepan
,
B.
,
Lee
,
D.
,
Agrawal
,
S.
,
Yu
,
Y.
,
Wang
,
Y.
,
Anderson
,
A.
,
Banerjee
,
A.
, and
Haran
,
K.
,
2021
, “
Comparison of Electrified Aircraft Propulsion Drive Systems With Different Electric Motor Topologies
,”
J. Propul. Power
,
37
(
5
), pp.
733
747
.10.2514/1.B38195
19.
Deshpande
,
A. A.
,
Chen
,
Y.
,
Narayanasamy
,
B.
,
Yuan
,
Z.
, and
Luo
,
F.
,
2020
, “
Modular Three-Level T-Type Power Electronics Building Block for Aircraft Electric-Propulsion Drives
,”
AIAA
Paper No. 2020-3595.10.2514/6.2020-3595
20.
Iwanizki
,
M.
,
Arzberger
,
M.
,
Plohr
,
M.
,
Silberhorn
,
D.
, and
Hecken
,
T.
,
2019
, “
Conceptual Design Studies of Short Range Aircraft Configurations With Hybrid Electric Propulsion
,”
AIAA
Paper No. 2019-3680.10.2514/6.2019-3680
21.
Dean
,
T. S.
,
Wroblewski
,
G. E.
, and
Ansell
,
P. J.
,
2018
, “
Mission Analysis and Component-Level Sensitivity Study of Hybrid-Electric General-Aviation Propulsion Systems
,”
J. Aircr.
,
55
(
6
), pp.
2454
2465
.10.2514/1.C034635
22.
Voskuijl
,
M.
,
Bogaert
,
J. V.
, and
Rao
,
A. G.
,
2018
, “
Analysis and Design of Hybrid Electric Regional Turboprop Aircraft
,”
CEAS Aeronaut. J.
,
9
(
1
), pp.
15
25
.10.1007/s13272-017-0272-1
23.
Pornet
,
C.
,
Gologan
,
C.
,
Vratny
,
P. C.
,
Seitz
,
A.
,
Schmitz
,
O.
,
Isikveren
,
A. T.
, and
Hornung
,
M.
,
2015
, “
Methodology for Sizing and Performance Assessment of Hybrid Energy Aircraft
,”
J. Aircr.
,
52
(
1
), pp.
341
352
.10.2514/1.C032716
24.
Sadey
,
D. J.
,
Csank
,
J.
,
Hanlon
,
P. A.
, and
Jansen
,
R.
,
2018
, “
A Generalized Power System Architecture Sizing and Analysis Framework
,”
AIAA
Paper No. 2018-4616.10.2514/6.2018-4616
25.
Kyprianidis
,
K. G.
,
2017
, “
An Approach to Multi-Disciplinary Aero Engine Conceptual Design
,” Proceedings of the 23rd International Society for Air Breathing Engines, Manchester, UK, Sept. 3–8, Paper No.
ISABE-2017-22661
.https://www.divaportal.org/smash/get/diva2:1305927/FULLTEXT01.pdf
26.
Samuelsson
,
S.
,
Kyprianidis
,
K. G.
, and
Grönstedt
,
T.
,
2015
, “
Consistent Conceptual Design and Performance Modeling of Aero Engines
,”
ASME
Paper No. GT2015-43331.10.1115/GT2015-43331
27.
Kavvalos
,
M.
,
Xin
,
Z.
,
Schnell
,
R.
,
Aslanidou
,
I.
,
Kalfas
,
A.
, and
Kyprianidis
,
K. G.
,
2019
, “
A Modelling Approach of Variable Geometry for Low Pressure Ratio Fans
,” International Symposium on Air Breathing Engines, ISABE 2019,
Canberra, Australia
, Sept. 23–27, Paper No.
ISABE-2019-24382
.http://mdh.divaportal.org/smash/get/diva2:1377116/FULLTEXT01.pdf
28.
Tong
,
M. T.
, and
Naylor
,
B. A.
,
2008
, “
An Object-Oriented Computer Code for Aircraft Engine Weight Estimation
,”
ASME
Paper No. GT2008-50062.10.1115/GT2008-50062
29.
Dubois
,
A.
,
Geest
,
M. V. D.
,
Bevirt
,
J.
,
Christie
,
R.
,
Borer
,
N. K.
, and
Clarke
,
S. C.
,
2016
, “
Design of an Electric Propulsion System for SCEPTOR's Outboard Nacelle
,”
AIAA
Paper No. 2016-3925.10.2514/6.2016-3925
30.
Huang
,
S.
,
Luo
,
J.
,
Leonardi
,
F.
, and
Lipo
,
T. A.
,
1998
, “
A General Approach to Sizing and Power Density Equations for Comparison of Electrical Machines
,”
IEEE Trans. Ind. Appl.
,
34
(
1
), pp.
92
97
.10.1109/28.658727
31.
Martínez
,
D.
,
2012
, “
Design of a Permanent-Magnet Synchronous Machine With Non-Overlapping Concentrated Windings for the Shell Eco Marathon Urban Prototype
,”
Master's thesis
,
KTH Royal Institute of Technology
,
Stockholm, Sweden
.https://www.divaportal.org/smash/get/diva2:583871/FULLTEXT01.pdf%20%5B24
32.
Laskaris
,
K.
,
2011
, “
Design and Manufacturing of Permanent Magnet Motors for Electric Vehicles
,” Ph.D. thesis,
National Technical University of Athens (NTUA)
,
Athens, Greece
.
33.
Woolmer
,
T. J.
, and
McCulloch
,
M. D.
,
2006
, “
Axial Flux Permanent Magnet Machines: A New Topology for High Performance Applications
,”
IET—The Institution of Engineering and Technology Hybrid Vehicle Conference
,
Coventry, UK
, Dec. 12–13, pp.
27
42
.https://ieeexplore.ieee.org/document/4077332
34.
Rao
,
D. K.
, and
Kuptsov
,
V.
,
2015
, “
Effective Use of Magnetization Data in the Design of Electric Machines With Overfluxed Regions
,”
IEEE Trans. Magn.
,
51
(
7
), pp.
1
9
.10.1109/TMAG.2015.2397398
35.
Valente
,
G.
,
Sumsurooah
,
S.
,
Hill
,
C. I.
,
Rashed
,
M.
,
Vakil
,
G.
,
Bozhko
,
S.
, and
Gerada
,
C.
,
2020
, “
Design Methodology and Parametric Design Study of the On-Board Electrical Power System for Hybrid Electric Aircraft Propulsion
,” Proceedings of the 10th International Conference on Power Electronics, Machines and Drives (
PEMD 2020
), Virtual, Dec. 15–17, pp.
448
454
.10.1049/icp.2021.1126
36.
Semidey
,
S. A.
, and
Mayor
,
R. J.
,
2014
, “
Experimentation of an Electric Machine Technology Demonstrator Incorporating Direct Winding Heat Exchangers
,”
IEEE Trans. Ind. Electron.
,
61
(
10
), pp.
5771
5778
.10.1109/TIE.2014.2303779
37.
Magnussen
,
F.
,
2004
, “
On Design and Analysis of Synchronous Permanent Magnet Machines for Field-Weakening Operation in Hybrid Electric Vehicles
,”
Ph.D. thesis
,
KTH Royal Institute of Technology
,
Stockholm, Sweden
.https://www.divaportal.org/smash/get/diva2:14278/FULLTEXT01.pdf
38.
Vratny
,
P. C.
,
2019
, “
Conceptual Design Methods of Electric Power Architectures for Hybrid Energy Aircraft
,”
Ph.D. thesis
,
Technische Universität München
,
München, Germany
.https://d-nb.info/1183259239/34
39.
ANIP9931E, Infineon Application Note
,
1999
, “
Calculation of Major IGBT Operating Parameters
,”
Infineon Technologies
, Neubiberg, Germany.
40.
Infineon Technical Documentation
, 2014, “
Dimensioning Program IPOSIM for Loss and Thermal Calculation of Infineon IGBT Modules
,”
Infineon Technologies
, Neubiberg, Germany.
41.
National Fire Protection Association
,
2014
,
NFPA 70: National Electrical Code
, Vol.
70
,
National Fire Protection Association
, Washington, DC.
42.
Cheng
,
F. C.
,
1994
, “
Insulation Thickness Determination of Polymeric Power Cables
,”
IEEE Trans. Dielectr. Electr. Insul.
,
1
(
4
), pp.
624
629
.10.1109/94.311705
43.
Christou
,
I.
,
Nelms
,
A.
,
Cotton
,
I.
, and
Husband
,
M.
,
2011
, “
Choice of Optimal Voltage for More Electric Aircraft Wiring Systems
,”
IET Electr. Syst. Transp.
,
1
(
1
), pp.
24
30
.10.1049/iet-est.2010.0021
44.
Chen
,
M.
, and
Rincon-Mora
,
G. A.
,
2006
, “
Accurate Electrical Battery Model Capable of Predicting Runtime and IV Performance
,”
IEEE Trans. Energy Convers.
,
21
(
2
), pp.
504
511
.10.1109/TEC.2006.874229
You do not currently have access to this content.