Abstract

In recent years, the radiative forcing of aircraft contrails and aircraft-induced contrail cirrus have been highlighted as a serious short-term climate impact of the aviation industry. Greater understanding of factors influencing contrail properties are required if routes to mitigation are to be explored. In this work, a parametric turbofan powered aircraft model has been created to study the impact that aircraft design, in particular the interaction between the jet and wingtip vortex, can have on ice crystal formation, growth, and dynamics within a contrail. To investigate this, a contrail microphysics module has been developed and integrated within Rolls-Royce in-house Hydra computational fluid dynamics code. Three-dimensional Reynolds-averaged Navier–Stokes simulations are conducted over the jet and early vortex regime, covering an area which is often simplified in most contrail modeling approaches. It is found that the position of the engine along the wing of an aircraft can impact the formation of the wingtip vortex, altering the contrail properties and distribution downstream of the aircraft. The effect of multi-engine architecture is also assessed and shown to influence the magnitude of exhaust entrainment into the vortex.

References

1.
Karcher
,
B.
,
2018
, “
Formation and Radiative Forcing of Contrail Cirrus
,”
Nat. Commun.
,
9
(
1
), p.
1824
.10.1038/s41467-018-04068-0
2.
van de Hulst
,
H.
,
1957
,
Light Scattering by Small Particles
,
Dover Publications
, Mineola, New York.
3.
Lee
,
D. S.
,
Fahey
,
D. W.
,
Skowron
,
A.
,
Allen
,
M. R.
,
Burkhardt
,
U.
,
Chen
,
Q.
,
Doherty
,
S. J.
, et al.,
2021
, “
The Contribution of Global Aviation to Anthropogenic Climate Forcing for 2000 to 2018
,”
Atmos. Environ.
,
244
, p.
117834
.10.1016/j.atmosenv.2020.117834
4.
Burkhardt
,
U.
, and
Karcher
,
B.
,
2011
, “
Global Radiative Forcing From Contrail Cirrus
,”
Nat. Clim. Change
,
1
(
1
), pp.
54
58
.10.1038/nclimate1068
5.
Karcher
,
B.
,
2016
, “
The Importance of Contrail Ice Formation for Mitigating the Climate Impact of Aviation
,”
J. Geophys. Res.: Atmos.
,
121
(
7
), pp.
3497
3505
.10.1002/2015JD024696
6.
Schumann
,
U.
,
1996
, “
On Conditions for Contrail Formation From Aircraft Exhausts
,”
Meteorol. Z.
,
5
(
1
), pp.
4
23
.10.1127/metz/5/1996/4
7.
Schumann
,
U.
,
2005
, “
Formation, Properties and Climatic Effects of Contrails
,”
C. R. Phys.
,
6
(
4–5
), pp.
549
565
.10.1016/j.crhy.2005.05.002
8.
Busen
,
R.
, and
Schumann
,
U.
,
1995
, “
Visible Contrail Formation From Fuels With Different Sulfur Contents
,”
Geophys. Res. Lett.
,
22
(
11
), pp.
1357
1360
.10.1029/95GL01312
9.
Karcher
,
B.
,
Busen
,
R.
,
Petzold
,
A.
,
Schroder
,
F.
,
Schumann
,
U.
, and
Jensen
,
E.
,
1998
, “
Physicochemistry of Aircraft-Generated Liquid Aerosols, Soot, and Ice Particles: 2. Comparison With Observations and Sensitivity Studies
,”
J. Geophys. Res.: Atmos.
,
103
(
D14
), pp.
17129
17147
.10.1029/98JD01045
10.
Jensen
,
E.
,
Toon
,
O.
,
Kinne
,
S.
,
Sachse
,
G.
,
Anderson
,
B.
,
Chan
,
K. R.
,
Twohy
,
C.
,
Gandrud
,
B.
,
Heymsfield
,
A.
, and
Miake-Lye
,
R.
,
1998
, “
Environmental Conditions Required for Contrail Formation and Persistence
,”
J. Geophys. Res.
,
103
(
D4
), pp.
3929
3936
.10.1029/97JD02808
11.
Gierens
,
K.
, and
Vazquez-Navarro
,
M.
,
2018
, “
Statistical Analysis of Contrail Lifetimes From a Satellite Perspective
,”
Meteorol. Z.
,
27
(
3
), pp.
182
193
.10.1127/metz/2018/0888
12.
Schumann
,
U.
,
Baumann
,
R.
,
Baumgardner
,
D.
,
Bedka
,
S. T.
,
Duda
,
D. P.
,
Freudenthaler
,
V.
,
Gayet
,
J.-F.
, et al.,
2017
, “
Properties of Individual Contrails: A Compilation of Observations and Some Comparisons
,”
Atmos. Chem. Phys.
,
17
(
1
), pp.
403
438
.10.5194/acp-17-403-2017
13.
Gerz
,
T.
,
Durbeck
,
T.
, and
Konopka
,
P.
,
1998
, “
Transport and Effective Diffusion of Aircraft Emissions
,”
J. Geophys. Res.
,
103
(
20
), pp.
25905
25913
.10.1029/98JD02282
14.
Paoli
,
R.
, and
Shariff
,
K.
,
2016
, “
Contrail Modeling and Simulation
,”
Annu. Rev. Fluid Mech.
,
48
(
1
), pp.
393
427
.10.1146/annurev-fluid-010814-013619
15.
Schumann
,
U.
,
2012
, “
A Contrail Cirrus Prediction Model
,”
Geosci. Model Dev.
,
5
(
3
), pp.
543
580
.10.5194/gmd-5-543-2012
16.
Karcher
,
B.
, and
Yu
,
F.
,
2009
, “
Role of Aircraft Soot Emissions in Contrail Formation
,”
Geophys. Res. Lett.
,
36
(
1
), Article No. L01804.10.1029/2008GL036649
17.
Karcher
,
B.
, and
Voigt
,
C.
,
2017
, “
Susceptibility of Contrail Ice Crystal Numbers to Aircraft Soot Particle Emissions
,”
Geophys. Res. Lett.
,
44
(
15
), pp.
8037
8046
.10.1002/2017GL074949
18.
Kleine
,
J.
,
Voigt
,
C.
,
Sauer
,
D.
,
Schlager
,
H.
,
Scheibe
,
M.
,
Jurkat‐Witschas
,
T.
,
Kaufmann
,
S.
,
Kärcher
,
B.
, and
Anderson
,
B. E.
,
2018
, “
In Situ Observations of Ice Particle Losses in a Young Persistent Contrail
,”
Geophys. Res. Lett.
,
45
(
24
), pp.
13553
13561
.10.1029/2018GL079390
19.
Voigt
,
C.
,
Kleine
,
J.
,
Sauer
,
D.
,
Moore
,
R. H.
,
Bräuer
,
T.
,
Le Clercq
,
P.
,
Kaufmann
,
S.
, et al.,
2021
, “
Cleaner Burning Aviation Fuels Can Reduce Contrail Cloudiness
,”
Commun. Earth Environ.
,
2
(
1
), p.
114
.10.1038/s43247-021-00174-y
20.
Unterstrasser
,
S.
,
Gierens
,
K.
, and
Spichtinger
,
P.
,
2008
, “
The Evolution of Contrail Microphysics in the Vortex Phase
,”
Meteorol. Z.
,
17
(
2
), pp.
145
156
.10.1127/0941-2948/2008/0273
21.
Lewellen
,
D.
, and
Lewellen
,
W.
,
2001
, “
The Effects of Aircraft Wake Dynamics on Contrail Development
,”
J. Atmos. Sci.
,
58
(
4
), pp.
390
406
.10.1175/1520-0469(2001)058<0390:TEOAWD>2.0.CO;2
22.
Naiman
,
A.
,
Lele
,
S.
, and
Jacobson
,
M.
,
2011
, “
Large Eddy Simulations of Contrail Development: Sensitivity to Initial and Ambient Conditions Over First Twenty Minutes
,”
J. Geophys. Res.: Atmos.
,
116
(
D21
), Article No. D21208.10.1029/2011JD015806
23.
Unterstrasser
,
S.
, and
Gorsch
,
N.
,
2014
, “
Aircraft-Type Dependency of Contrail Evolution
,”
J. Geophys. Res.: Atmos.
,
119
(
24
), pp.
14015
14027
.10.1002/2014JD022642
24.
McGraw
,
R.
,
1997
, “
Description of Aerosol Dynamics by the Quadrature Method of Moments
,”
Aerosol Sci. Technol.
,
27
(
2
), pp.
255
265
.10.1080/02786829708965471
25.
Guha
,
A.
,
1997
, “
A Unified Eulerian Theory of Turbulent Deposition to Smooth and Rough Surfaces
,”
J. Aerosol Sci.
,
28
(
8
), pp.
1517
1537
.10.1016/S0021-8502(97)00028-1
26.
Paoli
,
R.
,
Nybelen
,
L.
,
Picot
,
J.
, and
Cariolle
,
D.
,
2013
, “
Effects of Jet/Vortex Interaction on Contrail Formation in Supersaturated Conditions
,”
Phys. Fluids
,
25
(
5
), Article No. 053305.10.1063/1.4807063
27.
Guignery
,
F.
,
Montreuil
,
E.
,
Thual
,
O.
, and
Vancassel
,
X.
,
2012
, “
Contrail Microphysics in the Near Wake of a Realistic Wing Through RANS Simulations
,”
Aerosp. Sci. Technol.
,
23
(
1
), pp.
399
408
.10.1016/j.ast.2011.09.011
28.
Khou
,
J.
,
Ghedhaifi
,
W.
,
Vancassel
,
X.
, and
Garnier
,
F.
,
2015
, “
Spatial Simulation of Contrail Formation in Near-Field of Commercial Aircraft
,”
J. Aircr.
,
52
(
6
), pp.
1927
1938
.10.2514/1.C033101
29.
Khou
,
J.
,
Ghedhaifi
,
W.
,
Vancassel
,
X.
,
Montreuil
,
E.
, and
Garnier
,
F.
,
2017
, “
CFD Simulation of Contrail Formation in the Near Field of a Commercial Aircraft: Effect of Fuel Sulfur Content
,”
Meteorol. Z.
,
26
(
6
), pp.
585
596
.10.1127/metz/2016/0761
30.
Montreuil
,
E.
,
Ghedhaifi
,
W.
,
Chmielaski
,
V.
,
Vuillot
,
F.
,
Gand
,
F.
, and
Loseille
,
A.
,
2018
, “
Numerical Simulation of Contrail Formation on the Common Research Model Wing/Body/Engine Configuration
,”
AIAA
Paper No. 2018-3189.10.2514/6.2018-3189
31.
Cantin
,
S.
,
Misandeau
,
A.
,
Chouak
,
M.
, and
Garnier
,
F.
,
2022
, “
Effect of Nozzle Chevron Technology on the Near-Field Contrail Properties Behind an Aircraft Engine Using a CFD-Microphysics Coupling
,”
Proceedings of the 25th International Society of Air-breathing Engines Conference
(
ISABE 2022
), Ottawa, ON, Canada, Sept. 25–30, Paper No. ISABE-2022-227.https://www.researchgate.net/publication/364669987_Effect_of_nozzle_chevron_technology_on_the_near-field_contrail_properties_behind_an_aircraft_engine_using_a_CFDmicrophysics_coupling
32.
Lapworth
,
L.
,
2004
, “
HYDRA-CFD: A Framework for Collaborative CFD Development
,”
International Conference on Scientific and Engineering Computation
(
IC-SEC
), Singapore.https://www.researchgate.net/profile/Leigh-Lapworth-2/publication/316171819_HYDRACFD_A_Framework_for_Collaborative_CFD_Development/links/58f51082458515ff23b56169/HYDRA-CFD-A-Framework-for-Collaborative-CFD-Development.pdf
33.
Saulgeot
,
P.
,
Brion
,
V.
,
Bonne
,
N.
,
Dormy
,
E.
, and
Jacquin
,
L.
,
2023
, “
Effects of Atmospheric Stratification and Jet Position on the Properties of Early Aircraft Contrails
,”
Phys. Rev. Fluids
,
8
(
11
), Article No. 114702.10.1103/PhysRevFluids.8.114702
34.
McDonald
,
R.
,
2016
, “
Advanced Modeling in OpenVSP
,”
AIAA
Paper No. 2016-3282.10.2514/6.2016-3282
35.
Vassberg
,
J.
,
Deehan
,
M.
,
Rivers
,
M.
, and
Wahls
,
R.
,
2008
, “
Development of a Common Research Model for Applied CFD Validation Studies
,”
AIAA
Paper No. 2008-6919.10.2514/6.2008-6919
36.
AIAA
,
2020
, “
Dual Flow Reference Nozzles for Verification of Sub-Scale Thrust and Airflow Test Rigs: Dual Separate Flow Reference (DSFR) and Dual Mixed Flow Reference (DMFR) (AIAA R-146-2020)
,”
American Institute of Aeronautics and Astronautics
, Reston, VA.
37.
Tristanto
,
I.
,
Lapworth
,
B.
, and
Northall
,
J.
,
2009
, “
A Simulation Method for Turbo-Machinery Flows With Variable Gas Properties. Part 1: Development of an Approximate Riemann Solver CFD Code
,” CEAS, Manchester, UK.
38.
Karcher
,
B.
,
Peter
,
T.
,
Biermann
,
U.
, and
Schumann
,
U.
,
1996
, “
The Initial Composition of Jet Condensation Trails
,”
J. Atmos. Sci.
,
53
(
21
), pp.
3066
3083
.10.1175/1520-0469(1996)053<3066:TICOJC>2.0.CO;2
39.
Murphy
,
D.
, and
Koop
,
T.
,
2005
, “
Review of the Vapour Pressures of Ice and Supercooled Water for Atmospheric Applications
,”
Q. J. R. Meteorol. Soc.
,
131
(
608
), pp.
1539
1565
.10.1256/qj.04.94
40.
Sielemann
,
M.
,
Thorade
,
M.
,
Claesson
,
J.
,
Nguyen
,
A.
,
Zhao
,
X.
,
Sahoo
,
S.
, and
Kyprianidis
,
K.
,
2019
, “
Modelica and Functional Mock-Up Interface: Open Standards for Gas Turbine Simulation
,”
ASME
Paper No. GT2019-91597.10.1115/GT2019-91597
You do not currently have access to this content.