Abstract

Implementing high-diodicity inlets is critical to reduce backflow and mitigate the pressure loss across the injector in rotating detonation combustors (RDCs). Experiments on air injection diodicity were conducted in a nonpremixed RDC for both cold-flow and reacting conditions. The introduction of a Tesla-like diode impacted operating modes and injector dynamics, but the extent of that effect depended on the throat-to-combustor area ratio. A smaller ratio mitigated the impact of the diode on detonation characteristics, while a larger ratio extended the operating range of stronger wave modes. The diode stabilized RDC operation through an increased static pressure drop, but limited performance most likely due to poor reactant mixing and local equivalence ratio distribution. Cold-flow tests showed a higher diodicity for the diode, which may contribute to higher pressure gain in reacting experiments. A modified diodicity formulation based on reacting flow measurements was introduced, suggesting that a multimetric approach can be useful to assess injector performance. High-diodicity air inlets could be useful tools for reducing total pressure loss and controlling operating modes, but careful consideration is required to limit adverse effects on processes like reactant mixing.

References

1.
Paxson
,
D. E.
, and
Naples
,
A.
,
2017
, “
Numerical and Analytical Assessment of a Coupled Rotating Detonation Engine and Turbine Experiment
,”
AIAA
Paper No. 2017-1746.10.2514/6.2017-1746
2.
Bluemner
,
R.
,
Bohon
,
M. D.
,
Paschereit
,
C. O.
, and
Gutmark
,
E. J.
,
2020
, “
Effect of Inlet and Outlet Boundary Conditions on Rotating Detonation Combustion
,”
Combust. Flame
,
216
, pp.
300
315
.10.1016/j.combustflame.2020.03.011
3.
Anand
,
V.
, and
Gutmark
,
E.
,
2019
, “
Rotating Detonation Combustors and Their Similarities to Rocket Instabilities
,”
Prog. Energy Combust. Sci.
,
73
, pp.
182
234
.10.1016/j.pecs.2019.04.001
4.
Kaemming
,
T. A.
, and
Paxson
,
D. E.
,
2018
, “
Determining the Pressure Gain of Pressure Gain Combustion
,”
AIAA
Paper No. 2018-4567.10.2514/6.2018-4567
5.
Bach
,
E.
,
Paschereit
,
C.
,
Stathopoulos
,
P.
, and
Bohon
,
M. D.
,
2021
, “
An Empirical Model for Stagnation Pressure Gain in Rotating Detonation Combustors
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
3807
3814
.10.1016/j.proci.2020.07.071
6.
Sato
,
T.
,
Chacon
,
F.
,
White
,
L.
,
Raman
,
V.
, and
Gamba
,
M.
,
2021
, “
Mixing and Detonation Structure in a Rotating Detonation Engine With an Axial Air Inlet
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
3769
3776
.10.1016/j.proci.2020.06.283
7.
Sato
,
T.
,
Chacon
,
F.
,
Gamba
,
M.
, and
Raman
,
V.
,
2021
, “
Mass Flow Rate Effect on a Rotating Detonation Combustor With an Axial Air Injection
,”
Shock Waves
,
31
(
7
), pp.
741
751
.10.1007/s00193-020-00984-7
8.
Nordeen
,
C.
,
Schwer
,
D.
,
Schauer
,
F.
,
Hoke
,
J.
,
Barber
,
T.
, and
Cetegen
,
B. M.
,
2016
, “
Role of Inlet Reactant Mixedness on the Thermodynamic Performance of a Rotating Detonation Engine
,”
Shock Waves
,
26
(
4
), pp.
417
428
.10.1007/s00193-015-0570-7
9.
Bach
,
E.
,
Paschereit
,
C. O.
,
Stathopoulos
,
P.
, and
Bohon
,
M. D.
,
2020
, “
RDC Operation and Performance With Varying Air Injector Pressure Loss
,”
AIAA
Paper No. 2020-0199.10.2514/6.2020-0199
10.
Bigler
,
B.
,
Bennewitz
,
J.
,
Danczyk
,
S.
, and
Hargus
,
W.
,
2019
, “
Injector Mixing Effects in Rotating Detonation Rocket Engines
,”
AIAA
Paper No. 2019-3869.10.2514/6.2019-3869
11.
Bennewitz
,
J. W.
,
Bigler
,
B. R.
,
Hargus
,
W. A.
,
Danczyk
,
S. A.
, and
Smith
,
R. D.
,
2018
, “
Characterization of Detonation Wave Propagation in a Rotating Detonation Rocket Engine Using Direct High-Speed Imaging
,”
AIAA
Paper No. 2018-4688.10.2514/6.2018-4688
12.
Kirshner
,
J. M.
, and
Katz
,
S.
,
1975
,
Design Theory of Fluidic Components
,
Academic Press
, Cambridge, UK.
13.
Keller
,
A. R.
,
Otomize
,
J.
,
Nair
,
A. P.
,
Minesi
,
N. Q.
, and
Spearrin
,
R. M.
,
2022
, “
High-Diodicity Impinging Injector Design for Rocket Propulsion Enabled by Additive Manufacturing
,”
AIAA
Paper No. 2022-1265.10.2514/6.2022-1265
14.
Paxson
,
D. E.
, and
Miki
,
K.
,
2022
, “
Computational Assessment of Inlet Backflow Effects on Rotating Detonation Engine Performance and Operability
,”
AIAA
Paper No. 2022-1263.10.2514/6.2022-1263
15.
Nair
,
A. P.
,
Keller
,
A. R.
,
Morrow
,
D. S.
,
Lima
,
A. B.
,
Mitchell Spearrin
,
R.
, and
Pineda
,
D. I.
,
2022
, “
Hypergolic Continuous Detonation With Space-Storable Propellants and Additively Manufactured Injector Design
,”
J. Spacecr. Rockets
,
59
(
4
), pp.
1332
1341
.10.2514/1.A35272
16.
Yang
,
X.
,
Song
,
F.
,
Wu
,
Y.
,
Guo
,
S.
,
Xu
,
S.
,
Zhou
,
J.
, and
Liu
,
H.
,
2022
, “
Suppression of Pressure Feedback of the Rotating Detonation Combustor by a Tesla Inlet Configuration
,”
Appl. Therm. Eng.
,
216
, p.
119123
.10.1016/j.applthermaleng.2022.119123
17.
Zhou
,
J.
,
Song
,
F.
,
Wu
,
Y.
,
Xu
,
S.
,
Yang
,
X.
,
Liu
,
H.
, and
Li
,
Y.
,
2023
, “
Investigation of Pressure Gain Characteristics of RDE With Tesla Valve Inlet Scheme
,”
Exp. Therm. Fluid Sci.
,
146
, p.
110909
.10.1016/j.expthermflusci.2023.110909
18.
Anand
,
V.
,
St. George
,
A.
,
Driscoll
,
R.
, and
Gutmark
,
E.
,
2016
, “
Analysis of Air Inlet and Fuel Plenum Behavior in a Rotating Detonation Combustor
,”
Exp. Therm. Fluid Sci.
,
70
, pp.
408
416
.10.1016/j.expthermflusci.2015.10.007
19.
Bischoff
,
K.
,
Rehberg
,
S.
,
Barnouin
,
P.
,
Bach
,
E.
,
Paschereit
,
C. O.
, and
Bohon
,
M. D.
,
2023
, “
Effects of Increased RDC Injector Diodicity
,”
AIAA
Paper No. 2023-4142.10.2514/6.2023-4142
20.
Bluemner
,
R.
,
Gutmark
,
E. J.
,
Paschereit
,
C. O.
, and
Bohon
,
M. D.
,
2021
, “
Stabilization Mechanisms of Longitudinal Pulsations in Rotating Detonation Combustors
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
3797
3806
.10.1016/j.proci.2020.07.063
21.
Gordon
,
S.
, and
McBride
,
B. J.
,
1996
, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications
,”
NASA Lewis Research Center
,
Cleveland, OH
, Technical Report No.
NASA-RP-1311.
https://ntrs.nasa.gov/citations/19950013764
22.
Bluemner
,
R.
,
Bohon
,
M. D.
,
Paschereit
,
C. O.
, and
Gutmark
,
E. J.
,
2019
, “
Counter-Rotating Wave Mode Transition Dynamics in an RDC
,”
Int. J. Hydrogen Energy
,
44
(
14
), pp.
7628
7641
.10.1016/j.ijhydene.2019.01.262
23.
Weiss
,
S.
,
Bohon
,
M.
,
Paschereit
,
C.
, and
Gutmark
,
E.
,
2020
, “
Computational Study of Reactants Mixing in a Rotating Detonation Combustor Using Compressible RANS
,”
Flow, Turbul. Combust.
,
105
(
1
), pp.
267
295
.10.1007/s10494-019-00097-x
24.
Huff
,
R.
, and
Gamba
,
M.
,
2023
, “
Markov Chain Monte Carlo Parameter Estimation of Deflagration Losses in a Rotating Detonation Engine
,”
AIAA
Paper No. 2023-1293.10.2514/6.2023-1293
25.
Barnouin
,
P.
,
Bach
,
E.
,
Gutmarker
,
E.
,
Paschereit
,
C. O.
, and
Bohon
,
M. D.
,
2023
, “
Low-Order Model for Detonation Velocity Suppression in Rotating Detonation Combustors
,”
AIAA
Paper No. 2023-1291.10.2514/6.2023-1291
26.
Pryor
,
J.
,
Weightman
,
J.
,
Sandberg
,
R.
,
Bohon
,
M.
, and
Edgington-Mitchell
,
D. M.
,
2024
, “
A Study Into the Dynamics of an Injector-Shockwave Interaction
,”
AIAA
Paper No. 2024-0808.10.2514/6.2024-0808
27.
Codoni
,
J. R.
,
Birindelli
,
G.
,
Thoeny
,
A.
, and
Brophy
,
C. M.
,
2022
, “
Experimental Approaches for Obtaining a Temporally- and Spatially-Averaged Representative Static Pressure for Rotating Detonation Engines
,”
AIAA
Paper No. 2022-2369.10.2514/6.2022-2369
28.
Brophy
,
C. M.
, and
Codoni
,
J. R.
,
2019
, “
Experimental Performance Characterization of an RDE Using Equivalent Available Pressure
,”
AIAA
Paper No. 2019-4212.10.2514/6.2019-4212
29.
Kayser
,
T.
,
Wei
,
H.
,
Bach
,
E.
,
Paschereit
,
C. O.
, and
Bohon
,
M. D.
,
2023
, “
Experimental Comparison of Different Pressure Gain Measurement Techniques for RDCs
,”
AIAA
Paper No. 2023-0929.10.2514/6.2023-0929
30.
Fievisohn
,
R. T.
,
Hoke
,
J.
, and
Holley
,
A. T.
,
2022
, “
Experimental Measurements of Equivalent Available Pressure—Lessons Learned
,”
AIAA
Paper No. 2022-0833.10.2514/6.2022-0833
31.
Teasley
,
T. W.
,
Protz
,
C. S.
,
Larkey
,
A. P.
,
Williams
,
B. B.
, and
Gradl
,
P. R.
,
2021
, “
A Review Towards the Design Optimization of High Performance Additively Manufactured Rotating Detonation Rocket Engine Injectors
,”
AIAA
Paper No. 2021-3655.10.2514/6.2021-3655
32.
Nassini
,
P. C.
,
Andreini
,
A.
, and
Bohon
,
M. D.
,
2023
, “
Characterization of Refill Region and Mixing State Immediately Ahead of a Hydrogen-Air Rotating Detonation Using LES
,”
Combust. Flame
,
258
, p.
113050
.10.1016/j.combustflame.2023.113050
You do not currently have access to this content.