Abstract

Hydrogen is a promising zero-carbon fuel for decarbonized energy and transportation sectors. While carbon emission is not a concern for hydrogen combustion, its higher adiabatic flame temperature poses challenges of mitigating thermal NOx emissions. The wide flammability limits of hydrogen allow a fuel-lean operation, which can reduce NOx emissions. However, lean operation makes the combustion chamber susceptible to thermoacoustic oscillations. In this study, the thermoacoustic instabilities of partially premixed hydrogen flames in a lean direct injection (LDI) multicluster combustor are characterized using dynamical systems theory. The combustor was operated at a range of bulk velocities (30–90 m/s) and equivalence ratios (0.2–0.6), and time-resolved pressure oscillations and integrated OH* chemiluminescence measurements were taken. The thermoacoustic system reveals a variety of dynamical states in pressure such as period-1 limit cycle oscillation (LCO) with a single characteristic frequency, period-2 LCO with two characteristic frequencies, intermittent, quasi-periodic, and chaotic states as either bulk velocity or equivalence ratio is varied. At a bulk velocity of 30 m/s, as the equivalence ratio is gradually decreased from 0.6 to 0.2, the dynamical behavior follows a sequence from an intermittent state to a period-1 LCO, then to a quasi-periodic state, and eventually reaches a chaotic state. As the equivalence ratio is decreased for a bulk velocity of 60 m/s, the pressure oscillations evolve from a period-2 LCO to quasi-periodic state before flame blows off. The emergence of period-2 and quasi-periodic states indicate the presence of strong nonlinear interactions among the cavity acoustic modes. These modes and their spatial behavior are investigated using a reduced order model which solves the three-dimensional (3D) inhomogeneous Helmholtz equation with an n–tau flame model. The analyses show that the period-2 and quasi-periodic states can arise due to the interaction between the plenum and combustion chamber modes indicating that hydrogen flames may excite a wide range of cavity acoustic modes.

References

1.
Yu
,
G.
,
Law
,
C. K.
, and
Wu
,
C. K.
,
1986
, “
Laminar Flame Speeds of Hydrocarbon + Air Mixtures With Hydrogen Addition
,”
Combust. Flame
,
63
(
3
), pp.
339
347
.10.1016/0010-2180(86)90003-9
2.
Chterev
,
I.
, and
Boxx
,
I.
,
2021
, “
Effect of Hydrogen Enrichment on the Dynamics of a Lean Technically Premixed Elevated Pressure Flame
,”
Combust. Flame
,
225
, pp.
149
159
.10.1016/j.combustflame.2020.10.033
3.
Indlekofer
,
T.
,
Ahn
,
B.
,
Kwah
,
Y. H.
,
Wiseman
,
S.
,
Mazur
,
M.
,
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2021
, “
The Effect of Hydrogen Addition on the Amplitude and Harmonic Response of Azimuthal Instabilities in a Pressurized Annular Combustor
,”
Combust. Flame
,
228
, pp.
375
387
.10.1016/j.combustflame.2021.02.015
4.
Schuller
,
T.
,
Marragou
,
S.
,
Oztarlik
,
G.
,
Poinsot
,
T.
, and
Selle
,
L.
,
2022
, “
Influence of Hydrogen Content and Injection Scheme on the Describing Function of Swirled Flames
,”
Combust. Flame
,
240
, p.
111974
.10.1016/j.combustflame.2021.111974
5.
Goldmann
,
A.
, and
Dinkelacker
,
F.
,
2021
, “
Experimental Investigation and Modeling of Boundary Layer Flashback for Non-Swirling Premixed Hydrogen/Ammonia/Air Flames
,”
Combust. Flame
,
226
, pp.
362
379
.10.1016/j.combustflame.2020.12.021
6.
Lee
,
T.
, and
Kim
,
K. T.
,
2020
, “
Combustion Dynamics of Lean Fully-Premixed Hydrogen-Air Flames in a Mesoscale Multinozzle Array
,”
Combust. Flame
,
218
, pp.
234
246
.10.1016/j.combustflame.2020.04.024
7.
Funke
,
H. H.
,
Beckmann
,
N.
, and
Abanteriba
,
S.
,
2019
, “
An Overview on Dry Low NOx Micromix Combustor Development for Hydrogen-Rich Gas Turbine Applications
,”
Int. J. Hydrogen Energy
,
44
(
13
), pp.
6978
6990
.10.1016/j.ijhydene.2019.01.161
8.
York
,
W. D.
,
Ziminsky
,
W. S.
, and
Yilmaz
,
E.
,
2013
, “
Development and Testing of a Low NOx Hydrogen Combustion System for Heavy-Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
022001
.10.1115/1.4007733
9.
Marek
,
C. J.
,
Smith
,
T. D.
, and
Kundu
,
K.
,
2005
, “
Low Emission Hydrogen Combustors for Gas Turbines Using Lean Direct Injection
,”
AIAA
Paper No. 2005-3776.10.2514/6.2005-3776
10.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2006
, Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, American Institute of Aeronautics and Astronautics, Reston, VA.
11.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
12.
Kumar
,
A. D.
,
Massey
,
J. C.
,
Boxx
,
I.
, and
Swaminathan
,
N.
,
2023
, “
Effects of Hydrogen Enrichment on Thermoacoustic and Helical Instabilities in Swirl Stabilised Partially Premixed Flames
,”
Flow, Turbul. Combust.
, pp.
689–727
.10.1007/s10494-023-00504-4
13.
Kang
,
H.
, and
Kim
,
K. T.
,
2021
, “
Combustion Dynamics of Multi-Element Lean-Premixed Hydrogen-Air Flame Ensemble
,”
Combust. Flame
,
233
, p.
111585
.10.1016/j.combustflame.2021.111585
14.
Kumar
,
A. D.
,
Massey
,
J. C.
,
Stöhr
,
M.
,
Meier
,
W.
, and
Swaminathan
,
N.
,
2023
, “
Period-2 Thermoacoustics in a Swirl-Stabilised Partially Premixed Flame Computed Using Large Eddy Simulation
,”
Flow, Turbul. Combust.
,
111
(
3
), pp.
995
1028
.10.1007/s10494-023-00452-z
15.
Juniper
,
M. P.
, and
Sujith
,
R. I.
,
2018
, “
Sensitivity and Nonlinearity of Thermoacoustic Oscillations
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
661
689
.10.1146/annurev-fluid-122316-045125
16.
Kabiraj
,
L.
,
Sujith
,
R. I.
, and
Wahi
,
P.
,
2012
, “
Bifurcations of Self-Excited Ducted Laminar Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
031502
.10.1115/1.4004402
17.
Kobayashi
,
H.
,
Gotoda
,
H.
,
Tachibana
,
S.
, and
Yoshida
,
S.
,
2017
, “
Detection of Frequency-Mode-Shift During Thermoacoustic Combustion Oscillations in a Staged Aircraft Engine Model Combustor
,”
J. Appl. Phys.
,
122
(
22
), p.
224904
.10.1063/1.5003912
18.
Kushwaha
,
A.
,
Kasthuri
,
P.
,
Pawar
,
S. A.
,
Sujith
,
R. I.
,
Chterev
,
I.
, and
Boxx
,
I.
,
2021
, “
Dynamical Characterization of Thermoacoustic Oscillations in a Hydrogen-Enriched Partially Premixed Swirl-Stabilized Methane/Air Combustor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
12
), p.
121022
.10.1115/1.4052091
19.
Guan
,
Y.
,
Gupta
,
V.
,
Wan
,
M.
, and
Li
,
L. K.
,
2019
, “
Forced Synchronization of Quasiperiodic Oscillations in a Thermoacoustic System
,”
J. Fluid Mech.
,
879
, pp.
390
421
.10.1017/jfm.2019.680
20.
Li
,
L. K.
, and
Juniper
,
M. P.
,
2013
, “
Lock-In and Quasiperiodicity in a Forced Hydrodynamically Self-Excited Jet
,”
J. Fluid Mech.
,
726
, pp.
624
655
.10.1017/jfm.2013.223
21.
Zhou
,
H.
,
Tang
,
Q.
,
Ren
,
T.
,
Li
,
G.
, and
Cen
,
K.
,
2012
, “
Control of Thermoacoustic Instabilities by CO2 and N2 Jet in Cross-Flow
,”
Appl. Therm. Eng.
,
36
(
1
), pp.
353
359
.10.1016/j.applthermaleng.2011.10.048
22.
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2017
, “
Acoustic Damper Placement and Tuning for Annular Combustors: An Adjoint-Based Optimization Study
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
061501
.10.1115/1.4035201
23.
Mazur
,
M.
,
Nygård
,
H. T.
,
Dawson
,
J.
, and
Worth
,
N.
,
2018
, “
Experimental Study of Damper Position on Instabilities in an Annular Combustor
,”
ASME
Paper No. GT2018-75070.10.1115/GT2018-75070
24.
Ezenwajiaku
,
C.
,
Balachandran
,
R.
,
Ducci
,
A.
,
Picciani
,
M.
, and
Talibi
,
M.
,
2023
, “
Experimental Characterisation of the Dynamics of Partially Premixed Hydrogen Flames in a Lean Direct Injection (LDI) Combustor
,”
ASME
Paper No. GT2023-102611.10.1115/GT2023-102611
25.
Bonciolini
,
G.
,
Faure-Beaulieu
,
A.
,
Bourquard
,
C.
, and
Noiray
,
N.
,
2021
, “
Low Order Modelling of Thermoacoustic Instabilities and Intermittency: Flame Response Delay and Nonlinearity
,”
Combust. Flame
,
226
, pp.
396
411
.10.1016/j.combustflame.2020.12.034
26.
Fraser
,
A. M.
, and
Swinney
,
H. L.
,
1986
, “
Independent Coordinates for Strange Attractors from Mutual Information
,”
Phys. Rev. A
,
33
(
2
), p.
1134
.10.1103/PhysRevA.33.1134
27.
Kennel
,
M. B.
,
Brown
,
R.
, and
Abarbanel
,
H. D. I.
,
1992
, “
Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction
,”
Phys. Rev. A
,
45
(
6
), pp.
3403
3411
.10.1103/PhysRevA.45.3403
28.
Launay
,
G.
,
Cambonie
,
T.
,
Henry
,
D.
,
Pothérat
,
A.
, and
Botton
,
V.
,
2019
, “
Transition to Chaos in an Acoustically Driven Cavity Flow
,”
Phys. Rev. Fluids
,
4
(
4
), p.
044401
.10.1103/PhysRevFluids.4.044401
29.
Orchini
,
A.
,
Silva
,
C. F.
,
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2020
, “
Thermoacoustic Modes of Intrinsic and Acoustic Origin and Their Interplay With Exceptional Points
,”
Combust. Flame
,
211
, pp.
83
95
.10.1016/j.combustflame.2019.09.018
30.
Crocco
,
L.
,
1952
, “
Aspects of Combustion Stability in Liquid Propellant Rocket Motors Part I: Fundamentals. Low Frequency Instability With Monopropellants
,”
J. Am. Rocket Soc.
,
21
(
6
), pp.
163
178
.10.2514/8.4393
31.
Yong
,
K. J.
,
Silva
,
C. F.
, and
Polifke
,
W.
,
2021
, “
A Categorization of Marginally Stable Thermoacoustic Modes Based on Phasor Diagrams
,”
Combust. Flame
,
228
, pp.
236
249
.10.1016/j.combustflame.2021.01.003
32.
Yong
,
K. J.
,
Meindl
,
M.
,
Polifke
,
W.
, and
Silva
,
C. F.
,
2020
, “
Thermoacoustic Spectrum of a Swirled Premixed Combustor With Partially Reflecting Boundaries
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011005
.10.1115/1.4045275
33.
Preetham, Santosh
,
H.
, and
Lieuwen
,
T.
,
2008
, “
Dynamics of Laminar Premixed Flames Forced by Harmonic Velocity Disturbances
,”
J. Propul. Power
,
24
(
6
), pp.
1390
1402
.10.2514/1.35432
34.
Noiray
,
N.
,
Bothien
,
M.
, and
Schuermans
,
B.
,
2011
, “
Investigation of Azimuthal Staging Concepts in Annular Gas Turbines
,”
Combust. Theory Model.
,
15
(
5
), pp.
585
606
.10.1080/13647830.2011.552636
35.
Blumenthal
,
R. S.
,
Subramanian
,
P.
,
Sujith
,
R. I.
, and
Polifke
,
W.
,
2013
, “
Novel Perspectives on the Dynamics of Premixed Flames
,”
Combust. Flame
,
160
(
7
), pp.
1215
1224
.10.1016/j.combustflame.2013.02.005
You do not currently have access to this content.