Abstract

The demand for carbon-free fuels such as ammonia (NH3) and hydrogen (H2) has been growing rapidly due to stricter environmental policies on carbon emissions. Since ammonia is easier to store and transport, it is considered the leading alternative fuel for marine, aviation, and gas turbine industries. However, the narrow flammability, low reactivity, and potential emissions of nitrogen oxides (NOx) are important challenges that need to be overcome if ammonia is to be used as a practical fuel for industrial use. Recent works have provided important experimental data on the characteristics of NH3 flames under premixed and nonpremixed combustion modes, focusing on flame speed, turbulence–chemistry interaction, and especially the dissociation/cracking of NH3 into H2 and N2. These measurements have encouraged the use of computational fluid dynamics (CFD) for the simulation and scaling of practical ammonia systems, evaluating the performance of different numerical models for NH3 combustion. In this study, large eddy simulation (LES) is utilized to predict a series of NH3/H2/N2 nonpremixed flames stabilized on a bluff body burner. The accuracy of the flamelet generated manifold (FGM) combustion model combined with LES has been examined, using a commercial CFD solver. The different cracking levels of NH3 into H2 and N2 lead to simulation cases ranging from an H2/N2 flame (i.e., “fully cracked”) to a flame with 50% NH3 (i.e., “half cracked”). The different flame shapes, temperature distributions, NOx, and unburnt NH3 emissions have all been simulated, generally matching well the available experimental data. The developed model settings and numerical workflows may be applied to simulating more complex combustors which use NH3 as a fuel.

References

1.
Brady
,
K. B.
,
Hui
,
X.
, and
Sung
,
C.-J.
,
2015
, “
Effect of Hydrogen Addition on the Counterflow Ignition of n-Butanol at Atmospheric and Elevated Pressures
,”
Int. J. Hydrogen Energy
,
40
(
46
), pp.
16618
16633
.10.1016/j.ijhydene.2015.09.103
2.
Xin
,
Z.
,
Zhang
,
J.
,
Sordakis
,
K.
,
Beller
,
M.
,
Du
,
C.-X.
,
Laurenczy
,
G.
, and
Li
,
Y.
,
2018
, “
Towards Hydrogen Storage Through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid
,”
ChemSusChem
,
11
(
13
), pp.
2077
2082
.10.1002/cssc.201800408
3.
Sarathy
,
S. M.
,
Brequigny
,
P.
,
Katoch
,
A.
,
Elbaz
,
A. M.
,
Roberts
,
W. L.
,
Dibble
,
R. W.
, and
Foucher
,
F.
,
2020
, “
Laminar Burning Velocities and Kinetic Modeling of a Renewable e-Fuel: Formic Acid and Its Mixtures With H2 and CO2
,”
Energy Fuels
,
34
(
6
), pp.
7564
7572
.10.1021/acs.energyfuels.0c00944
4.
Takizawa
,
K.
,
Takahashi
,
A.
,
Tokuhashi
,
K.
,
Kondo
,
S.
, and
Sekiya
,
A.
,
2008
, “
Burning Velocity Measurements of Nitrogen-Containing Compounds
,”
J. Hazard. Mater.
,
155
(
1–2
), pp.
144
152
.10.1016/j.jhazmat.2007.11.089
5.
Elbaz
,
A. M.
,
Wang
,
S.
,
Guiberti
,
T. F.
, and
Roberts
,
W. L.
,
2022
, “
Review on the Recent Advances on Ammonia Combustion From the Fundamentals to the Applications
,”
Fuel Commun.
,
10
, p.
100053
.10.1016/j.jfueco.2022.100053
6.
Pfahl
,
U.
,
Ross
,
M.
,
Shepherd
,
J.
,
Pasamehmetoglu
,
K.
, and
Unal
,
C.
,
2000
, “
Flammability Limits, Ignition Energy, and Flame Speeds in H2–CH4– NH3–N2O–O2–N2 Mixtures
,”
Combust. Flame
,
123
(
1–2
), pp.
140
158
.10.1016/S0010-2180(00)00152-8
7.
Lee
,
J.
,
Lee
,
S.
, and
Kwon
,
O.
,
2010
, “
Effects of Ammonia Substitution on Hydrogen/Air Flame Propagation and Emissions
,”
Int. J. Hydrogen Energy
,
35
(
20
), pp.
11332
11341
.10.1016/j.ijhydene.2010.07.104
8.
Okafor
,
E. C.
,
Naito
,
Y.
,
Colson
,
S.
,
Ichikawa
,
A.
,
Kudo
,
T.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2018
, “
Experimental and Numerical Study of the Laminar Burning Velocity of CH4–NH3–Air Premixed Flames
,”
Combust. Flame
,
187
, pp.
185
198
.10.1016/j.combustflame.2017.09.002
9.
Han
,
X.
,
Wang
,
Z.
,
Costa
,
M.
,
Sun
,
Z.
,
He
,
Y.
, and
Cen
,
K.
,
2019
, “
Experimental and Kinetic Modeling Study of Laminar Burning Velocities of NH3/Air, NH3/H2/Air, NH3/CO/Air and NH3/CH4/Air Premixed Flames
,”
Combust. Flame
,
206
, pp.
214
226
.10.1016/j.combustflame.2019.05.003
10.
Hayakawa
,
A.
,
Goto
,
T.
,
Mimoto
,
R.
,
Arakawa
,
Y.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2015
, “
Laminar Burning Velocity and Markstein Length of Ammonia/Air Premixed Flames at Various Pressures
,”
Fuel
,
159
, pp.
98
106
.10.1016/j.fuel.2015.06.070
11.
Valera-Medina
,
A.
,
Pugh
,
D.
,
Marsh
,
P.
,
Bulat
,
G.
, and
Bowen
,
P.
,
2017
, “
Preliminary Study on Lean Premixed Combustion of Ammonia-Hydrogen for Swirling Gas Turbine Combustors
,”
Int. J. Hydrogen Energy
,
42
(
38
), pp.
24495
24503
.10.1016/j.ijhydene.2017.08.028
12.
Valera-Medina
,
A.
,
Gutesa
,
M.
,
Xiao
,
H.
,
Pugh
,
D.
,
Giles
,
A.
,
Goktepe
,
B.
,
Marsh
,
R.
, and
Bowen
,
P.
,
2019
, “
Premixed Ammonia/Hydrogen Swirl Combustion Under Rich Fuel Conditions for Gas Turbines Operation
,”
Int. J. Hydrogen Energy
,
44
(
16
), pp.
8615
8626
.10.1016/j.ijhydene.2019.02.041
13.
Westlye
,
F. R.
,
Ivarsson
,
A.
, and
Schramm
,
J.
,
2013
, “
Experimental Investigation of Nitrogen Based Emissions From an Ammonia Fueled SI-Engine
,”
Fuel
,
111
, pp.
239
247
.10.1016/j.fuel.2013.03.055
14.
Bioche
,
K.
,
Bricteux
,
L.
,
Bertolino
,
A.
,
Parente
,
A.
, and
Blondeau
,
J.
,
2021
, “
Large Eddy Simulation of Rich Ammonia/Hydrogen/Air Combustion in a Gas Turbine Burner
,”
Int. J. Hydrogen Energy
,
46
(
79
), pp.
39548
39562
.10.1016/j.ijhydene.2021.09.164
15.
Wiseman
,
S.
,
Rieth
,
M.
,
Gruber
,
A.
,
Dawson
,
J. R.
, and
Chen
,
J. H.
,
2021
, “
A Comparison of the Blow-Out Behavior of Turbulent Premixed Ammonia/Hydrogen/Nitrogen-Air and Methane–Air Flames
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2869
2876
.10.1016/j.proci.2020.07.011
16.
Alfazazi
,
A.
,
Elbaz
,
A. M.
,
Li
,
J.
,
Abdelwahid
,
S.
,
Im
,
H. G.
, and
Dally
,
B.
,
2023
, “
Characteristics of Ammonia-Hydrogen Nonpremixed Bluff-Body-Stabilized Flames
,”
Combust. Flame
,
258
, p.
113066
.10.1016/j.combustflame.2023.113066
17.
Xia
,
Y.
,
Verma
,
I.
,
Nakod
,
P.
,
Yadav
,
R.
,
Orsino
,
S.
, and
Li
,
S.
,
2022
, “
Numerical Simulations of a Lifted Hydrogen Jet Flame Using Flamelet Generated Manifold Approach
,”
ASME
Paper No. GT2022-80733.10.1115/GT2022-80733
18.
Xia
,
Y.
,
Verma
,
I.
,
Nakod
,
P.
,
Yadav
,
R.
,
Orsino
,
S.
, and
Li
,
S.
,
2022
, “
Numerical Simulations of a Lifted Hydrogen Jet Flame Using Flamelet Generated Manifold Approach
,”
ASME J. Eng. Gas Turbines Power
,
144
(
9
), p.
091009
.10.1115/1.4055104
19.
Ciccarelli
,
G.
,
Jackson
,
D.
, and
Verreault
,
J.
,
2006
, “
Flammability Limits of NH3–H2–N2–Air Mixtures at Elevated Initial Temperatures
,”
Combust. Flame
,
144
(
1–2
), pp.
53
63
.10.1016/j.combustflame.2005.06.010
20.
Ryu
,
K.
,
Zacharakis-Jutz
,
G. E.
, and
Kong
,
S.-C.
,
2014
, “
Performance Enhancement of Ammonia-Fueled Engine by Using Dissociation Catalyst for Hydrogen Generation
,”
Int. J. Hydrogen Energy
,
39
(
5
), pp.
2390
2398
.10.1016/j.ijhydene.2013.11.098
21.
Franco
,
M. C.
,
Rocha
,
R. C.
,
Costa
,
M.
, and
Yehia
,
M.
,
2021
, “
Characteristics of NH3/H2/Air Flames in a Combustor Fired by a Swirl and Bluff-Body Stabilized Burner
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5129
5138
.10.1016/j.proci.2020.06.141
22.
Pacheco
,
G. P.
,
Rocha
,
R. C.
,
Franco
,
M. C.
,
Mendes
,
M. A.
,
Fernandes
,
E. C.
,
Coelho
,
P. J.
, and
Bai
,
X.-S.
,
2021
, “
Experimental and Kinetic Investigation of Stoichiometric to Rich NH3/H2/Air Flames in a Swirl and Bluff-Body Stabilized Burner
,”
Energy Fuels
,
35
(
9
), pp.
7201
7216
.10.1021/acs.energyfuels.0c03872
23.
Khateeb
,
A. A.
,
Guiberti
,
T. F.
,
Zhu
,
X.
,
Younes
,
M.
,
Jamal
,
A.
, and
Roberts
,
W. L.
,
2020
, “
Stability Limits and NO Emissions of Technically-Premixed Ammonia-Hydrogen-Nitrogen-Air Swirl Flames
,”
Int. J. Hydrogen Energy
,
45
(
41
), pp.
22008
22018
.10.1016/j.ijhydene.2020.05.236
24.
Ansys, Inc.
,
2024
,
Ansys Fluent® User's Guide. Release 2024R1
,
Ansys
,
Canonsburg, PA
.
25.
Van Oijen
,
J.
, and
De Goey
,
L.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
26.
Xia
,
Y.
,
Verma
,
I.
,
Zore
,
K.
, and
Sharkey
,
P.
,
2020
, “
SBES/FGM Simulation of Forced Response of a Premixed Bluff-Body Stabilized Flame
,”
AIAA
Paper No. 2020-0175.10.2514/6.2020-0175
27.
Xia
,
Y.
,
Sharkey
,
P.
,
Orsino
,
S.
,
Kuron
,
M.
,
Menter
,
F.
,
Verma
,
I.
,
Malecki
,
R.
, and
Sen
,
B.
,
2020
, “
SBES/FGM Simulation of Film-Cooled Surface Heat Transfer and Near-Wall Reaction
,”
ASME
Paper No. GT2020-14717.10.1115/GT2020-14717
28.
Xia
,
Y.
,
Sharkey
,
P.
,
Orsino
,
S.
,
Kuron
,
M.
,
Menter
,
F.
,
Verma
,
I.
,
Malecki
,
R.
, and
Sen
,
B.
,
2021
, “
Stress-Blended Eddy Simulation/Flamelet Generated Manifold Simulation of Film-Cooled Surface Heat Transfer and Near-Wall Reaction
,”
ASME J. Turbomach
,
143
(
1
), p.
011008
.10.1115/1.4049133
29.
Xia
,
Y.
,
Stopford
,
P.
,
Sharkey
,
P.
, and
Verma
,
I.
,
2021
, “
Dynamic Mesh Adaption for Scale-Resolving Reacting Flow Simulations
,”
ASME
Paper No. GT2021-59100.10.1115/GT2021-59100
30.
Ansys, Inc.
,
2024
,
Ansys Fluent® Theory Guide. Release 2024R1
,
Ansys
,
Canonsburg, PA
.
31.
Nguyen
,
P.-D.
,
Vervisch
,
L.
,
Subramanian
,
V.
, and
Domingo
,
P.
,
2010
, “
Multidimensional Flamelet-Generated Manifolds for Partially Premixed Combustion
,”
Combust. Flame
,
157
(
1
), pp.
43
61
.10.1016/j.combustflame.2009.07.008
32.
Lodier
,
G.
,
Vervisch
,
L.
,
Moureau
,
V.
, and
Domingo
,
P.
,
2011
, “
Composition-Space Premixed Flamelet Solution With Differential Diffusion for In Situ Flamelet-Generated Manifolds
,”
Combust. Flame
,
158
(
10
), pp.
2009
2016
.10.1016/j.combustflame.2011.03.011
33.
Robert
,
H. K.
,
1970
, “
Diffusion by a Random Velocity Field
,”
Phys. Fluids
,
13
(
1
), p.
22
.
34.
Smirnov
,
A.
,
Shi
,
S.
, and
Celik
,
I.
,
2001
, “
Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
359
371
.10.1115/1.1369598
35.
Shrivastava
,
S.
,
Verma
,
I.
,
Yadav
,
R.
,
Nakod
,
P.
, and
Orsino
,
S.
,
2021
, “
Comparison of Performance of Flamelet Generated Manifold Model With That of Finite Rate Combustion Model for Hydrogen Blended Flames
,”
ASME
Paper No. GT2021-60232.10.1115/GT2021-60232
36.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
(
1
), p.
35
.10.1088/1367-2630/6/1/035
37.
Pope
,
S. B.
,
2014
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
38.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A: Fluid Dyn.
,
4
(
3
), pp.
633
635
.10.1063/1.858280
39.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “A
Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids
, 3, pp.
1760
1765
.10.1063/1.857955
40.
Kim
,
S.-E.
,
2004
, “
Large Eddy Simulation Using Unstructured Meshes and Dynamic Subgrid-Scale Turbulence Models
,”
AIAA
Paper No. 2004-2548.10.2514/6.2004-2548
41.
Ansys, Inc
.,
2024
,
Ansys Model Fuel Library® (MFL). Release 2024R1
,
Ansys
,
Canonsburg, PA
.
42.
Nakamura
,
H.
,
Hasegawa
,
S.
, and
Tezuka
,
T.
,
2017
, “
Kinetic Modeling of Ammonia/Air Weak Flames in a Micro Flow Reactor With a Controlled Temperature Profile
,”
Combust. Flame
,
185
, pp.
16
27
.10.1016/j.combustflame.2017.06.021
43.
Otomo
,
J.
,
Koshi
,
M.
,
Mitsumori
,
T.
,
Iwasaki
,
H.
, and
Yamada
,
K.
,
2018
, “
Chemical Kinetic Modeling of Ammonia Oxidation With Improved Reaction Mechanism for Ammonia/Air and Ammonia/Hydrogen/Air Combustion
,”
Int. J. Hydrogen Energy
,
43
(
5
), pp.
3004
3014
.10.1016/j.ijhydene.2017.12.066
44.
Zhang
,
X.
,
Moosakutty
,
S. P.
,
Rajan
,
R. P.
,
Younes
,
M.
, and
Sarathy
,
S. M.
,
2021
, “
Combustion Chemistry of Ammonia/Hydrogen Mixtures: Jet-Stirred Reactor Measurements and Comprehensive Kinetic Modeling
,”
Combust. Flame
,
234
, p.
111653
.10.1016/j.combustflame.2021.111653
45.
Glarborg
,
P.
,
2023
, “
The NH3/NO2/O2 System: Constraining Key Steps in Ammonia Ignition and N2O Formation
,”
Combust. Flame
,
257
, p.
112311
.10.1016/j.combustflame.2022.112311
46.
Dally
,
B. B.
,
Fletcher
,
D. F.
, and
Masri
,
A. R.
,
1998
, “
Flow and Mixing Fields of Turbulent Bluff-Body Jets and Flames
,”
Combust. Theory Modell.
,
2
(
2
), pp.
193
219
.10.1088/1364-7830/2/2/006
47.
Rowhani
,
A.
,
Sun
,
Z. W.
,
Medwell
,
P. R.
,
Alwahabi
,
Z. T.
,
Nathan
,
G. J.
, and
Dally
,
B. B.
,
2022
, “
Effects of the Bluff-Body Diameter on the Flow-Field Characteristics of Non-Premixed Turbulent Highly-Sooting Flames
,”
Combust. Sci. Technol.
,
194
(
2
), pp.
378
396
.10.1080/00102202.2019.1680508
48.
Ansys, Inc
.,
2024
,
Ansys Chemkin-Pro®. Release 2024R1
,
Ansys
,
Cannonsburg, PA
.
49.
Irwin
,
L.
,
Stekli
,
J.
,
Pfefferkorn
,
C.
, and
Pitchumani
,
R.
,
2017
, “
Thermochemical Energy Storage for Concentrating Solar Thermal (CST) Systems
,”
Advances in Concentrating Solar Thermal Research and Technology
,
Woodhead Publishing
,
Thorston, UK
, pp.
247
267
.
You do not currently have access to this content.