Abstract

With new restrictions imposed on gas turbine efficiencies and power outputs, lubricating oils are used at higher temperatures and harsher conditions leading to potential, unintended combustion. To establish an understanding of lubricating oil's resistance to combustion, a new spray injector system was utilized in the High-Pressure Shock Tube (HPST) Facility at the TEES Turbomachinery Laboratory at Texas A&M University. Two gas turbine oils (Mobil DTE 732 and Castrol Perfecto X32), a base mineral oil, and a surrogate (n-hexadecane) were tested at postreflected shock conditions at equivalence ratios near 2.5. Castrol Perfecto X32 was also characterized at an equivalence ratio near 1.2. All of the lubricating oils displayed ignition between temperatures of 1152 and 1383 K and near atmospheric pressures. To characterize combustion, two different definitions of ignition delay time (IDT) were considered: sidewall OH* chemiluminescence and sidewall pressure. Both definitions were used to create temperature-dependent correlations for each of the lubricating oils. In general, both definitions provided similar results within the accuracy of the measurements. One trend from the data herein is that the brand-name oils (Mobil DTE 732 and Castrol Perfecto X32) provided ignition delay times that were similar to each other but slightly larger than the corresponding mineral oil and n-hexadecane results. This difference could be attributed to the additives that are present in the brand-name oils.

References

1.
Skjoedt
,
M.
,
Butts
,
R.
,
Assanis
,
D. N.
, and
Bohac
,
S. V.
,
2008
, “
Effects of Oil Properties on Spark-Ignition Gasoline Engine Friction
,”
Tribol. Int.
,
41
(
6
), pp.
556
563
.10.1016/j.triboint.2007.12.001
2.
Levy
,
Y.
,
Sherbaum
,
V.
, and
Arfi
,
P.
,
2004
, “
Basic Thermodynamics of FLOXCOM, the Low-NOx Gas Turbines Adiabatic Combustor
,”
Appl. Therm. Eng.
,
24
(
11–12
), pp.
1593
1605
.10.1016/j.applthermaleng.2003.11.022
3.
Feist
,
J. P.
,
Sollazzo
,
P. Y.
,
Berthier
,
S.
,
Charnley
,
B.
, and
Wells
,
J.
,
2013
, “
Application of an Industrial Sensor Coating System on a Rolls-Royce Jet Engine for Temperature Detection
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
012101
.10.1115/1.4007370
4.
Petersen
,
E. L.
,
Mathieu
,
O.
,
Thomas
,
J. C.
,
Cooper
,
S. P.
,
Teitge
,
D. S.
,
Juárez
,
R.
,
Gutierrez
,
N.
, and
Mashuga
,
C. V.
,
2021
, “
Combustion and Oxidation of Lube Oils at Gas Turbine Conditions: Experimental Methods
,”
ASME
Paper No. GT2021-60319.10.1115/GT2021-60319
5.
Loomis
,
W. R.
,
1976
, “
Aircraft Engine Sump-Fire Studies
,”
Proceedings of NASA Aircraft Safety and Operating Problems Conference
,
NASA
,
Hampton, VA
, Oct. 18–20 , pp.
443
456
.https://ntrs.nasa.gov/citations/19770011160
6.
Ohtomo
,
M.
,
Miyagawa
,
H.
,
Koike
,
M.
,
Yokoo
,
N.
, and
Nakata
,
K.
,
2014
, “
Pre-Ignition of Gasoline-Air Mixture Triggered by a Lubricant Oil Droplet
,”
SAE Int. J. Fuels Lubr.
,
7
(
3
), pp.
673
682
.10.4271/2014-01-2627
7.
Teitge
,
D.
,
Thomas
,
J. C.
, and
Petersen
,
E. L.
,
2020
, “
High-Speed Video Analysis of Lubricating Oils Undergoing Hot-Surface Ignition
,”
AIAA
Paper No. 2020-3887. 10.2514/6.2020-3887
8.
Cooper
,
S. P.
,
Browne
,
Z. K.
,
Alturaifi
,
S. A.
,
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2021
, “
Auto-Ignition of Gas Turbine Lubricating Oils in a Shock Tube Using Spray Injection
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051008
.10.1115/1.4049484
9.
Cooper
,
S. P.
, and
Petersen
,
E. L.
,
2021
, “
High-Temperature Ignition Kinetics of Gas Turbine Lubricating Oils
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111020
.10.1115/1.4051985
10.
Cooper
,
S. P.
,
Mohr
,
D. J.
,
Abulail
,
M.
, and
Petersen
,
E. L.
,
2023
, “
An Improved Spray-Injector Technique for Examining High-Temperature Ignition of Lubricating Oils in Shock Tubes
,” epub.
11.
Cooper
,
S. P.
,
2023
, “
High-Temperature Ignition Kinetics of Lubricating Oils
,” Dissertation.
12.
Brower
,
M.
,
Petersen
,
E. L.
,
Metcalfe
,
W.
,
Curran
,
H. J.
,
Füri
,
M.
,
Bourque
,
G.
,
Aluri
,
N.
, and
Güthe
,
F.
,
2013
, “
Ignition Delay Time and Laminar Flame Speed Calculations for Natural Gas/Hydrogen Blends at Elevated Pressures
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021504
.10.1115/1.4007763
13.
Alturaifi
,
S. A.
,
Rebagay
,
R. L.
,
Mathieu
,
O.
,
Guo
,
B.
, and
Petersen
,
E. L.
,
2019
, “
A Shock-Tube Autoignition Study of Jet, Rocket, and Diesel Fuels
,”
Energy Fuels
,
33
(
3
), pp.
2516
2525
.10.1021/acs.energyfuels.8b04290
14.
Hargis
,
J. W.
,
Cooper
,
S. P.
,
Mathieu
,
O.
,
Guo
,
B.
, and
Petersen
,
E. L.
,
2020
, “
Ignition-Delay Time Measurements of Heavy Hydrocarbons in an Aerosol Shock Tube
,”
AIAA
Paper No. 2020-2144. 10.2514/6.2020-2144
15.
Hargis
,
J. W.
,
Cooper
,
S. P.
,
Mathieu
,
O.
,
Guo
,
B.
, and
Petersen
,
E. L.
,
2021
, “
High-Temperature Ignition Behavior of Conventional and GTL Fuels Using an Aerosol Shock Tube
,”
Combust. Flame
,
226
, pp.
490
504
.10.1016/j.combustflame.2020.12.030
16.
Niegemann
,
P.
,
Herzler
,
J.
,
Fikri
,
M.
, and
Schulz
,
C.
,
2020
, “
Studying the Influence of Single Droplets on Fuel/Air Ignition in a High-Pressure Shock Tube
,”
Rev. Sci. Instrum.
,
91
(
10
), p.
105107
.10.1063/5.0024614
17.
Petersen
,
E. L.
, and
Hanson
,
R. K.
,
2001
, “
Nonideal Effects Behind Reflected Shock Waves in a High-Pressure Shock Tube
,”
Shock Waves
,
10
(
6
), pp.
405
420
.10.1007/PL00004051
18.
Nativel
,
D.
,
Cooper
,
S. P.
,
Lipkowicz
,
T.
,
Fikri
,
M.
,
Petersen
,
E. L.
, and
Schulz
,
C.
,
2020
, “
Impact of Shock-Tube Facility-Dependent Effects on Incident- and Reflected-Shock Conditions Over a Wide Range of Pressures and Mach Numbers
,”
Combust. Flame
,
217
, pp.
200
211
.10.1016/j.combustflame.2020.03.023
19.
Petersen
,
E. L.
,
2009
, “
Interpreting Endwall and Sidewall Measurements in Shock-Tube Ignition Studies
,”
Combust. Sci. Technol.
,
181
(
9
), pp.
1123
1144
.10.1080/00102200902973323
20.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Stagni
,
A.
,
Pelucchi
,
M.
,
Cuoci
,
A.
, and
Faravelli
,
T.
,
2014
, “
Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels
,”
Int. J. Chem. Kinet.
,
46
(
9
), pp.
512
542
.10.1002/kin.20867
You do not currently have access to this content.