Abstract

The primary purpose of this study is the reduction of local entropy production in a contra-rotating stage. As such, the unsteady flow phenomena and the impact of radial load distribution on these phenomena and local entropy production need to be clarified. In this study, the stress-blended eddy simulation (SBES) turbulence model is utilized to capture the vortices in the flow separation zone, and the γ-Reθ transition model is employed to predict the transition phenomenon within the boundary layer. Entropy production rate models suitable for different turbulence models are constructed separately to calculate local entropy production. Vortex visualization is achieved according to the λci criterion, and the relative vorticity change rate is used to analyze the components of the tip clearance vortices. The transition phenomenon is analyzed from the perspectives of both the Euler and the Lagrange descriptions. The primary findings can be summarized as follows: the transition begins earlier and progresses more rapidly in the rear rotor. Wake propagation, occurring at double the frequency, entropy production rate within the boundary layer changes in synchrony with the wall shear stress at the same frequency. Additionally, an investigation of the tip clearance vortices concludes that the main structure of the tip clearance vortices coincides with the flow pattern of the high entropy production rate region, and the flow structure related to the high divergence area is essential for considering subsequent optimization with the aim of reducing the entropy production rate.

References

1.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2008
, “
Periodical Unsteady Flow Within a Rotor Blade Row of an Axial Compressor—Part I: Flow Field at Midspan
,”
ASME J. Turbomach.
,
130
(
4
), p.
041004
.10.1115/1.2812329
2.
Storer
,
J. A.
, and
Cumpsty
,
N. A.
,
1994
, “
An Approximate Analysis and Prediction Method for Tip Clearance Loss in Axial Compressors
,”
ASME J. Turbomach.
,
116
(
4
), pp.
648
656
.10.1115/1.2929457
3.
Wu
,
Y.
,
Wu
,
J.
,
Zhang
,
G.
, and
Chu
,
W.
,
2014
, “
Experimental and Numerical Investigation of Flow Characteristics Near Casing in an Axial Flow Compressor Rotor at Stable and Stall Inception Conditions
,”
ASME J. Fluids Eng.
,
136
(
11
), p.
111106
.10.1115/1.4027178
4.
Lakshminarayana
,
B.
,
Zaccaria
,
M.
, and
Marathe
,
B.
,
1995
, “
The Structure of Tip Clearance Flow in Axial Flow Compressors
,”
ASME J. Turbomach.
,
117
(
3
), pp.
336
347
.10.1115/1.2835667
5.
Furukawa
,
M.
,
Inoue
,
M.
,
Saiki
,
K.
, and
Yamada
,
K.
,
1999
, “
The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics
,”
ASME J. Turbomach.
,
121
(
3
), pp.
469
480
.10.1115/1.2841339
6.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.10.1115/1.2750674
7.
Vo
,
H. D.
,
2010
, “
Role of Tip Clearance Flow in Rotating Instabilities and Nonsynchronous Vibrations
,”
J. Propul. Power
,
26
(
3
), pp.
556
561
.10.2514/1.26709
8.
Liu
,
Y.
,
Zhong
,
L.
, and
Lu
,
L.
,
2019
, “
Comparison of DDES and URANS for Unsteady Tip Leakage Flow in an Axial Compressor Rotor
,”
ASME J. Fluids Eng.
,
141
(
12
), p.
121405
.10.1115/1.4043774
9.
Deutsch
,
S.
, and
Zierke
,
W. C.
,
1988
, “
The Measurement of Boundary Layers on a Compressor Blade in Cascade: Part 3—Pressure Surface Boundary Layers and the Near Wake
,”
ASME J. Turbomach.
,
110
(
1
), pp.
146
152
.10.1115/1.3262160
10.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 1 of 4—Composite Picture
,”
ASME J. Turbomach.
,
119
(
1
), pp.
114
127
.10.1115/1.2841000
11.
Hilgenfeld
,
L.
, and
Pfitzner
,
M.
,
2004
, “
Unsteady Boundary Layer Development Due to Wake Passing Effects on a Highly Loaded Linear Compressor Cascade
,”
ASME J. Turbomach.
,
126
(
4
), pp.
493
500
.10.1115/1.1791290
12.
Wheeler
,
A. P. S.
,
Miller
,
R. J.
, and
Hodson
,
H. P.
,
2007
, “
The Effect of Wake Induced Structures on Compressor Boundary-Layers
,”
ASME J. Turbomach.
,
129
(
4
), pp.
705
712
.10.1115/1.2720499
13.
Zou
,
T.
, and
Lee
,
C.
,
2021
, “
The Effect of the Wake on the Separated Boundary Layer in a Two-Stage Compressor
,”
Phys. Fluids
,
33
(
3
), p.
034125
.10.1063/5.0045922
14.
Alexiou
,
A.
,
Roumeliotis
,
I.
,
Aretakis
,
N.
,
Tsalavoutas
,
A.
, and
Mathioudakis
,
K.
,
2012
, “
Modeling Contra-Rotating Turbomachinery Components for Engine Performance Simulations: The Geared Turbofan With Contra-Rotating Core Case
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111701
.10.1115/1.4007197
15.
Nouri
,
H.
,
Ravelet
,
F.
,
Bakir
,
F.
,
Sarraf
,
C.
, and
Rey
,
R.
,
2012
, “
Design and Experimental Validation of a Ducted Counter-Rotating Axial-Flow Fans System
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
104504
.10.1115/1.4007591
16.
Gao
,
L.
,
Li
,
R.
,
Miao
,
F.
, and
Cai
,
Y.
,
2015
, “
Unsteady Investigation on Tip Flow Field and Rotating Stall in Counter-Rotating Axial Compressor
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
072603
.10.1115/1.4029101
17.
Ravelet
,
F.
,
Bakir
,
F.
,
Sarraf
,
C.
, and
Wang
,
J.
,
2018
, “
Experimental Investigation on the Effect of Load Distribution on the Performances of a Counter-Rotating Axial-Flow Fan
,”
Exp. Therm. Fluid Sci.
,
96
, pp.
101
110
.10.1016/j.expthermflusci.2018.03.004
18.
Shahriyari
,
M. J.
,
Khaleghi
,
H.
, and
Heinrich
,
M.
,
2019
, “
A Model for Stall and Surge in Low-Speed Contra-Rotating Fans
,”
ASME J. Eng. Gas Turbines Power
,
141
(
8
), p.
081009
.10.1115/1.4043251
19.
Manas
,
M. P.
,
Karmakar
,
A.
, and
Pradeep
,
A. M.
,
2021
, “
Windmilling Characteristics of a Contra-Rotating Fan
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081004
.10.1115/1.4049265
20.
Bandopadhyay
,
T.
, and
Mistry
,
C. S.
,
2022
, “
Effects of Total Pressure Distribution on Performance of Small-Size Counter-Rotating Axial-Flow Fan Stage for Electrical Propulsion
,”
ASME Open J. Eng.
,
1
, p.
011012
.10.1115/1.4053962
21.
Kerrebrock
,
J. L.
,
Epstein
,
A. H.
,
Merchant
,
A. A.
,
Guenette
,
G. R.
,
Parker
,
D.
,
Onnee
,
J.
,
Neumayer
,
F.
,
Adamczyk
,
J. J.
, and
Shabbir
,
A.
,
2008
, “
Design and Test of an Aspirated Counter-Rotating Fan
,”
ASME J. Turbomach.
,
130
(
2
), p.
021004
.10.1115/1.2776951
22.
Wang
,
C.
,
2018
, “
Trailing Edge Perforation for Interaction Tonal Noise Reduction of a Contra-Rotating Fan
,”
ASME J. Vib. Acoust.
,
140
(
2
), p.
021016
.10.1115/1.4038253
23.
Heinrich
,
M.
,
Khaleghi
,
H.
, and
Friebe
,
C.
,
2020
, “
Effect of Circumferential Casing Treatment on Low-Speed Contra-Rotating Fans
,”
J. Appl. Fluid Mech.
,
13
(
6
), pp.
1719
1726
.10.47176/JAFM.13.06.31492
24.
Guo
,
Y.
,
Mao
,
X.
,
Gao
,
L.
, and
Yu
,
Y.
,
2022
, “
Numerical Study on the Stability Enhancement Mechanism of Self-Recirculating Casing Treatment in a Counter-Rotating Axial-Flow Compressor
,”
Eng. Appl. Comput. Fluid Mech.
,
16
(
1
), pp.
1111
1130
.10.1080/19942060.2022.2072955
25.
Wu
,
C.
,
2022
, “
A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial, Radial, and Mixed-Flow Types
,”
Trans. ASME
,
74
(
8
), pp.
1363
1380
.10.1115/1.4016114
26.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
27.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.10.1007/s00162-006-0015-0
28.
Menter
,
F.
,
2018
, “
Stress-Blended Eddy Simulation (SBES)—A New Paradigm in Hybrid RANS-LES Modeling
,”
Progress in Hybrid RANS-LES Modelling: Papers Contributed to the 6th Symposium on Hybrid RANS-LES Methods
,
Y.
Hoarau
, ed.,
Springer International Publishing
,
Strasbourg, France
, pp.
27
37
.
29.
Ligrani
,
P.
, and
Sik Jin
,
J.
,
2013
, “
Second Law Analysis of Aerodynamic Losses: Results for a Cambered Vane With and Without Film Cooling
,”
ASME J. Turbomach.
,
135
(
4
), p.
041013
.10.1115/1.4007588
30.
Winkler
,
S.
,
Kerber
,
E.
,
Hitz
,
T.
,
Weigand
,
B.
, and
Ligrani
,
P.
,
2017
, “
Numerical Second Law Analysis Around a Turbine Guide Vane Using a Two-Equation Turbulence Model and Comparison With Experiments
,”
Int. J. Therm. Sci.
,
116
, pp.
91
102
.10.1016/j.ijthermalsci.2017.01.013
31.
Kock
,
F.
, and
Herwig
,
H.
,
2004
, “
Local Entropy Production in Turbulent Shear Flows: A High-Reynolds Number Model With Wall Functions
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2205
2215
.10.1016/j.ijheatmasstransfer.2003.11.025
32.
Vanga
,
S. R.
, and
Ligrani
,
P. M.
,
2021
, “
Second Law Analysis of Aerodynamic Gains Associated With Simple Angle and Compound Angle Full Coverage Film Cooling
,”
Int. J. Thermophys.
,
42
(
11
), pp.
1
27
.10.1007/s10765-021-02906-w
33.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T.
,
1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
, pp.
353
396
.10.1017/S002211209900467X
34.
Liu
,
Y.
, and
Tan
,
L.
,
2018
, “
Tip Clearance on Pressure Fluctuation Intensity and Vortex Characteristic of a Mixed Flow Pump as Turbine at Pump Mode
,”
Renewable Energy
,
129
, pp.
606
615
.10.1016/j.renene.2018.06.032
35.
Vanga
,
S. R.
, and
Ligrani
,
P. M.
,
2022
, “
Second Law Analysis of Aerodynamic Characteristics With Flow Temperature Variations of Simple Angle and Compound Angle Full Coverage Film Cooling
,”
Int. J. Therm. Sci.
,
176
, p.
107511
.10.1016/j.ijthermalsci.2022.107511
36.
Yao
,
H.
,
Yan
,
P.
, and
Han
,
W.
,
2011
, “
Numerical Investigation of Influence of Rotor/Stator Interaction on Blade Boundary Layer Flow in a Low Speed Compressor
,”
J. Therm. Sci.
,
20
(
1
), pp.
39
46
.10.1007/s11630-011-0432-2
37.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 2 of 4—Compressors
,”
ASME J. Turbomach.
,
119
(
3
), pp.
426
444
.10.1115/1.2841142
38.
Zou
,
T.
, and
Lee
,
C.
,
2019
, “
Rotor Boundary Layer Development in a Two-Stage Compressor
,”
Phys. Fluids
,
31
(
12
), p.
123606
.10.1063/1.5131805
39.
Shen
,
X.
,
Zhao
,
X.
,
Xu
,
B.
,
Zhang
,
D.
,
Yang
,
G.
,
Shi
,
W.
, and
van Esch
,
B. B.
,
2022
, “
Unsteady Characteristics of Tip Leakage Vortex Structure and Dynamics in an Axial Flow Pump
,”
Ocean Eng.
,
266
, p.
112850
.10.1016/j.oceaneng.2022.112850
You do not currently have access to this content.