Abstract

The low dissipation low dispersion (LD2) second-order accurate scheme is effective for scale-resolving simulations in finite volume computational fluid dynamics (CFD) solvers, thanks to its combination of a skew-symmetric split form for convective terms and matrix-valued artificial dissipation fluxes. However, reactive flow simulations face challenges due to steep gradients and varying gas properties. This study replaces the skew-symmetric scheme with the kinetic energy and entropy preserving (KEEP) scheme, utilizing quadratic and cubic split forms for convective terms, enhancing stability. The nonsmooth fluid interfaces in reactive flow simulations necessitate upwind fluxes for reactive scalars to limit total variation (TV), also requiring upwind fluxes for the mixture-dependent internal energy fluxes. Other convective terms use central discretizations from the KEEP scheme, leveraging LD2’s spatial reconstruction to minimize dispersive errors. Numerical assessments show this approach reduces spurious pressure oscillations in single and multicomponent flows. The absolute flux Jacobian for dissipation flux calculation is efficiently computed using an expanded Turkel’s approach for thermally perfect gas mixtures. Partial pressure derivatives are approximated when using the flamelet generated manifolds (FGM) combustion model. The proposed scheme is evaluated through scale-resolving simulations of the Cambridge burner flame SWB1 on an unstructured grid using the density-based solver TRACE, employing both finite rate chemistry (FRC) and FGM combustion models. Comparative analysis with the all-speed SLAU2 scheme shows the superior performance of the proposed scheme in handling turbulent reactive multicomponent flows.

References

1.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.10.1016/0021-9991(81)90128-5
2.
Kitamura
,
K.
, and
Shima
,
E.
,
2013
, “
Towards Shock-Stable and Accurate Hypersonic Heating Computations: A New Pressure Flux for AUSM-Family Schemes
,”
J. Comput. Phys.
,
245
, pp.
62
83
.10.1016/j.jcp.2013.02.046
3.
Kitamura
,
K.
, and
Hashimoto
,
A.
,
2016
, “
Reduced Dissipation AUSM-Family Fluxes: HR-SLAU2 and HR-AUSM+-Up for High Resolution Unsteady Flow Simulations
,”
Comput. Fluids
,
126
, pp.
41
57
.10.1016/j.compfluid.2015.11.014
4.
Garnier
,
E.
,
Mossi
,
M.
,
Sagaut
,
P.
,
Comte
,
P.
, and
Deville
,
M.
,
1999
, “
On the Use of Shock-Capturing Schemes for Large-Eddy Simulation
,”
J. Computat. Phys.
,
153
(
2
), pp.
273
311
.10.1006/jcph.1999.6268
5.
Löwe
,
J.
,
Probst
,
A.
,
Knopp
,
T.
, and
Kessler
,
R.
,
2016
, “
Low-Dissipation Low-Dispersion Second-Order Scheme for Unstructured Finite Volume Flow Solvers
,”
AIAA J.
,
54
(
10
), pp.
2961
2971
.10.2514/1.J054956
6.
Probst
,
A.
,
Löwe
,
J.
,
Reuß
,
S.
,
Knopp
,
T.
, and
Kessler
,
R.
,
2016
, “
Scale-Resolving Simulations With a Low-Dissipation Low-Dispersion Second-Order Scheme for Unstructured Flow Solvers
,”
AIAA J.
,
54
(
10
), pp.
2972
2987
.10.2514/1.J054957
7.
Kok
,
J.
,
2009
, “
A High-Order Low-Dispersion Symmetry-Preserving Finite Volume Method for Compressible Flow on Curvilinear Grids
,”
J. Comput. Phys.
,
228
(
18
), pp.
6811
6832
.10.1016/j.jcp.2009.06.015
8.
Morinishi
,
Y.
,
Lund
,
T. S.
,
Vasilyev
,
O. V.
, and
Moin
,
P.
,
1998
, “
Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow
,”
J. Comput. Physics
,
143
(
1
), pp.
90
124
.10.1006/jcph.1998.5962
9.
Morinishi
,
Y.
, and
Vasilyev
,
O. V.
,
2001
, “
A Recommended Modification to the Dynamic Two-Parameter Mixed Subgrid Scale Model for Large Eddy Simulation of Wall Bounded Turbulent Flow
,”
Phys. Fluids
,
13
(
11
), pp.
3400
3410
.10.1063/1.1404396
10.
Pirozzoli
,
S.
,
2010
, “
Generalized Conservative Approximations of Split Convective Derivative Operators
,”
J. Comput. Phys.
,
229
(
19
), pp.
7180
7190
.10.1016/j.jcp.2010.06.006
11.
Morinishi
,
Y.
,
2010
, “
Skew-Symmetric Form of Convective Terms and Fully Conservative Finite Difference Schemes for Variable Density low-Mach Number Flows
,”
J. Comput. Phys.
,
229
(
2
), pp.
276
300
.10.1016/j.jcp.2009.09.021
12.
Tam
,
C.
, and
Shen
,
H.
,
1993
, “
Direct Computation of Nonlinear Acoustic Pulses Using High-Order Finite Difference Schemes
,”
AIAA
Paper No. 1993-4325.10.2514/6.1993-4325
13.
Jameson
,
A.
,
2017
, “
Origins and Further Development of the Jameson–Schmidt–Turkel Scheme
,”
AIAA J.
,
55
(
5
), pp.
1487
1510
.10.2514/1.J055493
14.
Kuya
,
Y.
,
Totani
,
K.
, and
Kawai
,
S.
,
2018
, “
Kinetic Energy and Entropy Preserving Schemes for Compressible Flows by Split Convective Forms
,”
J. Comput. Phys.
,
375
, pp.
823
853
.10.1016/j.jcp.2018.08.058
15.
Shima
,
N.
,
Kuya
,
Y.
,
Tamaki
,
Y.
, and
Kawai
,
S.
,
2021
, “
Preventing Spurious Pressure Oscillations in Split Convective Form Discretization for Compressible Flows
,”
J. Comput. Phys.
,
427
, p.
110060
.10.1016/j.jcp.2020.110060
16.
Karni
,
S.
,
1994
, “
Multicomponent Flow Calculations by a Consistent Primitive Algorithm
,”
J. Comput. Phys.
,
112
(
1
), pp.
31
43
.10.1006/jcph.1994.1080
17.
Abgrall
,
R.
,
1996
, “
How to Prevent Pressure Oscillations in Multicomponent Flow Calculations: A Quasi Conservative Approach
,”
J. Comput. Phys.
,
125
(
1
), pp.
150
160
.10.1006/jcph.1996.0085
18.
Abgrall
,
R.
, and
Karni
,
S.
,
2001
, “
Computations of Compressible Multifluids
,”
J. Comput. Phys.
,
169
(
2
), pp.
594
623
.10.1006/jcph.2000.6685
19.
Billet
,
G.
, and
Abgrall
,
R.
,
2003
, “
An Adaptive Shock-Capturing Algorithm for Solving Unsteady Reactive Flows
,”
Comput. Fluids
,
32
(
10
), pp.
1473
1495
.10.1016/S0045-7930(03)00004-5
20.
Houim
,
R. W.
, and
Kuo
,
K. K.
,
2011
, “
A Low-Dissipation and Time-Accurate Method for Compressible Multi-Component Flow With Variable Specific Heat Ratios
,”
J. Comput. Phys.
,
230
(
23
), pp.
8527
8553
.10.1016/j.jcp.2011.07.031
21.
Lv
,
Y.
, and
Ihme
,
M.
,
2014
, “
Discontinuous Galerkin Method for Multicomponent Chemically Reacting Flows and Combustion
,”
J. Comput. Phys.
,
270
, pp.
105
137
.10.1016/j.jcp.2014.03.029
22.
Fujiwara
,
Y.
,
Tamaki
,
Y.
, and
Kawai
,
S.
,
2023
, “
Fully Conservative and Pressure-Equilibrium Preserving Scheme for Compressible Multi-Component Flows
,”
J. Comput. Phys.
,
478
, p.
111973
.10.1016/j.jcp.2023.111973
23.
Gövert
,
S.
,
Lipkowicz
,
J. T.
, and
Janus
,
B.
,
2024
, “
Compressible Large Eddy Simulation of Thermoacoustic Instabilities in the PRECCINSTA Combustor Using Flamelet Generated Manifolds With Dynamic Thickened Flame Model
,”
ASME J. Eng. Gas Turbines Power
,
146
(
1
), p.
011011
.10.1115/1.4063419
24.
McBride
,
B. J.
,
Gordon
,
S.
, and
Reno
,
M. A.
,
1993
,
Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species
,
Office of Management, Scientific and Technical Information Program
, National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH, Vol.
4513
.
25.
Ducros
,
F.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
1998
, “
Wall-Adapting Local Eddy-Viscosity Models for Simulations in Complex Geometries
,”
Numer. Methods Fluid Dyn. VI
,
6
, pp.
293
299
.https://www.researchgate.net/publication/248366844_Wall-Adapting_Local_Eddy-Viscosity_Models_for_Simulations_in_Complex_Geometries
26.
Butler
,
T. D.
, and
O'Rourke
,
P. J.
,
1977
, “
A Numerical Method for Two Dimensional Unsteady Reacting Flows
,”
Symp. (Int.) Combust.
,
16
(
1
), pp.
1503
1515
.10.1016/S0082-0784(77)80432-3
27.
Legier
,
J.-P.
,
Poinsot
,
T.
, and
Veynante
,
D.
,
2000
, “
Dynamically Thickened Flame LES Model for Premixed and Non-Premixed Turbulent Combustion
,”
Proceedings of the Summer Program
, Stanford, CA, July 2–27, Vol.
12
, pp.
157
168
.https://web.stanford.edu/group/ctr/ctrsp00/poinsot.pdf
28.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
29.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion Part I: Non-Dynamic Formulation and Initial Tests
,”
Combust. Flame
,
131
(
1–2
), pp.
159
180
.10.1016/S0010-2180(02)00400-5
30.
Wang
,
G.
,
Boileau
,
M.
, and
Veynante
,
D.
,
2011
, “
Implementation of a Dynamic Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Combust. Flame
,
158
(
11
), pp.
2199
2213
.10.1016/j.combustflame.2011.04.008
31.
Durand
,
L.
, and
Polifke
,
W.
,
2007
, “
Implementation of the Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion in a Commercial Solver
,”
ASME
Paper No. GT2007-28188.10.1115/GT2007-28188
32.
Wilke
,
C. R.
,
1950
, “
A Viscosity Equation for Gas Mixtures
,”
J. Chem. Phys.
,
18
(
4
), pp.
517
519
.10.1063/1.1747673
33.
Mathur
,
S.
,
Tondon
,
P.
, and
Saxena
,
S.
,
1967
, “
Thermal Conductivity of Binary, Ternary and Quaternary Mixtures of Rare Gases
,”
Mol. Physics
,
12
(
6
), pp.
569
579
.10.1080/00268976700100731
34.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2023
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” accessed Aug. 31, 2024, https://www.cantera.org
35.
Bilger
,
R.
,
Stårner
,
S.
, and
Kee
,
R.
,
1990
, “
On Reduced Mechanisms for Methane Air Combustion in Nonpremixed Flames
,”
Combust. Flame
,
80
(
2
), pp.
135
149
.10.1016/0010-2180(90)90122-8
36.
Yang
,
S.
,
Yang
,
V.
,
Sun
,
W.
,
Nagaraja
,
S.
,
Sun
,
W.
,
Ju
,
Y.
, and
Gou
,
X.
,
2016
, “
Parallel on-the-Fly Adaptive Kinetics for Non-Equilibrium Plasma Discharges of C2H4/O2/Ar Mixture
,”
AIAA
Paper No. 2016-0195.10.2514/6.2016-0195
37.
Swanson
,
R. C.
, and
Turkel
,
E.
,
1992
, “
On Central-Difference and Upwind Schemes
,”
J. Comput. Phys.
,
101
(
2
), pp.
292
306
.10.1016/0021-9991(92)90007-L
38.
Azevedo
,
J. L. F.
, and
Korzenowski
,
H.
,
2009
, “
An Assessment of Unstructured Grid Finite Volume Schemes for Cold Gas Hypersonic Flow Calculations
,”
J. Aerosp. Technol. Manage.
,
1
(
2
), pp.
135
152
.10.5028/jatm.2009.0102135152
39.
Carlsson
,
M.
,
Davidson
,
L.
,
Peng
,
S.-H.
, and
Arvidson
,
S.
,
2023
, “
Investigation of Low-Dissipation Low-Dispersion Schemes for Incompressible and Compressible Flows in Scale-Resolving Simulations
,”
Comput. Fluids
,
251
, p.
105741
.10.1016/j.compfluid.2022.105741
40.
Turkel
,
E.
, and
Vatsa
,
V. N.
,
1994
, “
Effect of Artificial Viscosity on Three-Dimensional Flow Solutions
,”
AIAA Journal
,
32
(
1
), pp.
39
45
.10.2514/3.11948
41.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1981
, “
Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge Kutta Time Stepping Schemes
,”
AIAA
Paper No. 1981-1259.10.2514/6.1981-1259
42.
Birken
,
P.
, and
Meister
,
A.
,
2005
, “
Stability of Preconditioned Finite Volume Schemes at Low Mach Numbers
,”
BIT Numer. Math.
,
45
(
3
), pp.
463
480
.10.1007/s10543-005-0009-0
43.
Oßwald
,
K.
,
Siegmund
,
A.
,
Birken
,
P.
,
Hannemann
,
V.
, and
Meister
,
A.
,
2016
, “
L2Roe: A Low Dissipation Version of Roe’s Approximate Riemann Solver for Low Mach Numbers
,”
Int. J. Numer. Methods Fluids
,
81
(
2
), pp.
71
86
.10.1002/fld.4175
44.
Becker
,
K. C.
, and
Ashcroft
,
G.
,
2014
, “
A Comparative Study of Gradient Reconstruction Methods for Unstructured Meshes With Application to Turbomachinery Flows
,”
AIAA
Paper No. 2014-0069.10.2514/6.2014-0069
45.
Burg
,
C.
,
2005
, “
Higher Order Variable Extrapolation for Unstructured Finite Volume RANS Flow Solvers
,”
AIAA
Paper No. 2005-4999.10.2514/6.2005-4999
46.
Venkatakrishnan
,
V.
,
1993
, “
On the Accuracy of Limiters and Convergence to Steady State Solutions
,”
AIAA
Paper No. 1993-880.10.2514/6.1993-880
47.
Tamaki
,
Y.
,
Kuya
,
Y.
, and
Kawai
,
S.
,
2022
, “
Comprehensive Analysis of Entropy Conservation Property of Non-Dissipative Schemes for Compressible Flows: KEEP Scheme Redefined
,”
J. Comput. Phys.
,
468
, p.
111494
.10.1016/j.jcp.2022.111494
48.
Zhou
,
R.
,
Balusamy
,
S.
,
Sweeney
,
M. S.
,
Barlow
,
R. S.
, and
Hochgreb
,
S.
,
2013
, “
Flow Field Measurements of a Series of Turbulent Premixed and Stratified Methane/Air Flames
,”
Combust. Flame
,
160
(
10
), pp.
2017
2028
.10.1016/j.combustflame.2013.04.007
49.
Sweeney
,
M. S.
,
Hochgreb
,
S.
,
Dunn
,
M. J.
, and
Barlow
,
R. S.
,
2012
, “
The Structure of Turbulent Stratified and Premixed Methane/Air Flames I: Non-Swirling Flows
,”
Combust. Flame
,
159
(
9
), pp.
2896
2911
.10.1016/j.combustflame.2012.06.001
50.
Giles
,
M. B.
,
1990
, “
Nonreflecting Boundary Conditions for Euler Equation Calculations
,”
AIAA J.
,
28
(
12
), pp.
2050
2058
.10.2514/3.10521
51.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2014
, “
Synthetic Turbulence Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems
,”
Flow, Turbul. Combust.
,
93
(
1
), pp.
63
92
.10.1007/s10494-014-9534-8
52.
Le Bras
,
S.
,
Deniau
,
H.
,
Bogey
,
C.
, and
Daviller
,
G.
,
2017
, “
Development of Compressible Large-Eddy Simulations Combining High-Order Schemes and Wall Modeling
,”
AIAA J.
,
55
(
4
), pp.
1152
1163
.10.2514/1.J055107
53.
Hejranfar
,
K.
, and
Kamali-Moghadam
,
R.
,
2012
, “
Preconditioned Characteristic Boundary Conditions for Solution of the Preconditioned Euler Equations at Low Mach Number Flows
,”
J. Comput. Phys.
,
231
(
12
), pp.
4384
4402
.10.1016/j.jcp.2012.01.040
54.
Franzelli
,
B.
,
Riber
,
E.
,
Gicquel
,
L. Y.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulation of Combustion Instabilities in a Lean Partially Premixed Swirled Flame
,”
Combust. Flame
,
159
(
2
), pp.
621
637
.10.1016/j.combustflame.2011.08.004
55.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2023
, “
GRI-MECH 3.0
,” accessed Jan. 7, 2023, http://www.me.berkeley.edu/gri_mech/
56.
Nambully
,
S.
,
Domingo
,
P.
,
Moureau
,
V.
, and
Vervisch
,
L.
,
2014
, “
A Filtered-Laminar-Flame PDF Sub-Grid Scale Closure for LES of Premixed Turbulent Flames. Part I: Formalism and Application to a Bluff-Body Burner With Differential Diffusion
,”
Combust. Flame
,
161
(
7
), pp.
1756
1774
.10.1016/j.combustflame.2014.01.005
57.
Proch
,
F.
, and
Kempf
,
A. M.
,
2014
, “
Numerical Analysis of the Cambridge Stratified Flame Series Using Artificial Thickened Flame LES With Tabulated Premixed Flame Chemistry
,”
Combust. Flame
,
161
(
10
), pp.
2627
2646
.10.1016/j.combustflame.2014.04.010
58.
Gruhlke
,
P.
,
Proch
,
F.
,
Kempf
,
A. M.
,
Dederichs
,
S.
,
Beck
,
C.
, and
Mahiques
,
E. I.
,
2018
, “
Prediction of CO and NOx Pollutants in a Stratified Bluff Body Burner
,”
ASME J. Eng. Gas Turbines Power
,
140
(
10
), p.
101502
.10.1115/1.4039833
59.
Engelmann
,
L.
,
Hasslberger
,
J.
,
Inanc
,
E.
,
Klein
,
M.
, and
Kempf
,
A.
,
2022
, “
A-Posteriori Assessment of Large-Eddy Simulation Subgrid-Closures for Momentum and Scalar Fluxes in a Turbulent Premixed Burner Experiment
,”
Comput. Fluids
,
240
, p.
105441
.10.1016/j.compfluid.2022.105441
You do not currently have access to this content.