Abstract

The estimation of flame transfer functions (FTF) from time series data generated by large eddy simulation (LES) via system identification (SI) is an important element of thermoacoustic analysis. A continuous time series of adequate length is required to achieve low uncertainty, especially when dealing with turbulent noise. Limited scalability of LES codes implies that the wall-clock-time required for generating such time series may be excessive. The present paper tackles this challenge by exploring how the superposition of multiple simulations with the same excitation signal, but varying initial conditions, increases signal-to-noise ratio (SNR) and leads to more robust identification. In addition, the established SI approach, which relies on broadband excitation, is compared to excitation with approximate Dirac and Heaviside signals, promising simpler pre- and postprocessing. Results demonstrate that the proposed workflow reduces significantly the wall-clock-time required for robust FTF identification. This reduction in wall-clock-time requires more parallel computational resources, but it does not significantly increase the overall computational cost while also enabling FTF estimation using Heaviside excitation. The proposed method is assessed on a partially premixed, steam enriched water-enhanced turbofan (“WET”) swirl burner with significant turbulent noise levels. Steam enrichment is a combustion concept that reduces harmful emissions such as NOx and CO2 while increasing engine efficiency. However, the effect of steam on the flame response needs to be better understood. To this end, a combustion model including an optimized global chemical mechanism for partially premixed wet methane combustion is presented and validated against experimental data.

References

1.
Polifke
,
W.
,
2020
, “
Modeling and Analysis of premixed flame Dynamics by Means of Distributed Time Delays
,”
Prog. Energy Combust. Sci.
,
79
, p.
100845
.10.1016/j.pecs.2020.100845
2.
Gentemann
,
A.
,
Hirsch
,
C.
,
Kunze
,
K.
,
Kiesewetter
,
F.
,
Sattelmayer
,
T.
, and
Polifke
,
W.
,
2004
, “
Validation of Flame Transfer Function Reconstruction for Perfectly Premixed Swirl Flames
,”
ASME
Paper No. GT2004-53776.10.1115/GT2004-53776
3.
Huber
,
A.
, and
Polifke
,
W.
,
2009
, “
Dynamics of Practical Premix Flames, Part I: Model Structure and Identification
,”
Int. J. Spray Combust. Dyn.
,
1
(
2
), pp.
199
228
.10.1260/175682709788707431
4.
Huber
,
A.
, and
Polifke
,
W.
,
2009
, “
Dynamics of Practical Premix Flames, Part II: Identification and Interpretation of CFD Data
,”
Int. J. Spray Combust. Dyn.
,
1
(
2
), pp.
229
249
.10.1260/175682709788707440
5.
Tay-Wo-Chong
,
L.
, and
Polifke
,
W.
,
2013
, “
Large Eddy Simulation-Based Study of the Influence of Thermal Boundary Condition and Combustor Confinement on Premix Flame Transfer Functions
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021502
.10.1115/1.4007734
6.
Kuhlmann
,
J.
,
Marragou
,
S.
,
Boxx
,
I.
,
Schuller
,
T.
, and
Polifke
,
W.
,
2022
, “
LES Based Prediction of Technically Premixed Flame Dynamics and Comparison With Perfectly Premixed Mode
,”
Phys. Fluids
,
34
(
8
), p.
085125
.10.1063/5.0098962
7.
Eder
,
A. J.
,
Dharmaputra
,
B.
,
Désor
,
M.
,
Silva
,
C. F.
,
Garcia
,
A. M.
,
Schuermans
,
B.
,
Noiray
,
N.
, and
Polifke
,
W.
,
2023
, “
Generation of Entropy Waves by Fully Premixed Flames in a Non-Adiabatic Combustor With Hydrogen Enrichment
,”
ASME J. Eng. Gas Turbines Power
,
145
(
11
), p.
111001
.10.1115/1.4063283
8.
Innocenti
,
A.
,
Andreini
,
A.
, and
Facchini
,
B.
,
2015
, “
Numerical Identification of a Premixed Flame Transfer Function and Stability Analysis of a Lean Burn Combustor
,”
Energy Proc.
,
82
, pp.
358
365
.10.1016/j.egypro.2015.11.803
9.
Innocenti
,
A.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Peschiulli
,
A.
,
2017
, “
Numerical Analysis of the Dynamic Flame Response of a Spray Flame for Aero-Engine Applications
,”
Int. J. Spray Combust. Dyn.
,
9
(
4
), pp.
310
329
.10.1177/1756827717703577
10.
Jaensch
,
S.
,
Merk
,
M.
,
Emmert
,
T.
, and
Polifke
,
W.
,
2018
, “
Identification of Flame Transfer Functions in the Presence of Intrinsic Thermoacoustic Feedback and Noise
,”
Combust. Theory Modell.
,
22
(
3
), pp.
613
634
.10.1080/13647830.2018.1443517
11.
Kuhlmann
,
J.
,
Guo
,
S.
, and
Polifke
,
W.
,
2021
, “
A Top Level Parallelization and Data Fusion Approach for Identification of Flame Transfer Functions With Increased Reliability, Accuracy and Efficiency
,”
Proceedings of the 27th International Congress on Sound and Vibration
, Virtual Online, July
11
16
.https://portal.fis.tum.de/en/publications/a-top-levelparallelization-and-data-fusion-approach-for-identifi
12.
Göke
,
S.
,
Terhaar
,
S.
,
Schimek
,
S.
,
Göckeler
,
K.
, and
Paschereit
,
C. O.
,
2011
, “
Combustion of Natural Gas, Hydrogen and Bio-Fuels at Ultra-Wet Conditions
,”
ASME
Paper No. GT2011-45696.10.1115/GT2011-45696
13.
Schimek
,
S.
,
Goke
,
S.
,
Schrodinger
,
C.
, and
Paschereit
,
C.
,
2012
, “
Analysis of Flame Transfer Functions for Blends of CH4 and H2 at Different Humidity Levels
,”
AIAA
Paper No. 2012-0932.10.2514/6.2012-0932
14.
Schimek
,
S.
,
Göke
,
S.
,
Schrödinger
,
C.
, and
Paschereit
,
C. O.
,
2012
, “
Flame Transfer Function Measurements With CH4 and H2 Fuel Mixtures at Ultra Wet Conditions in a Swirl Stabilized Premixed Combustor
,”
ASME
Paper No. GT2012-69788.10.1115/GT2012-69788
15.
Göke
,
S.
,
Albin
,
E.
,
Göckeler
,
K.
,
Krüger
,
O.
,
Schimek
,
S.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2012
, “
Ultra-Wet Combustion for High Efficiency, Low Emission Gas Turbines
,”
The Future of Gas Turbine Technology 6th International Conference
, Brussels, Belgium, Oct.
17
18
.https://www.researchgate.net/publication/280095519_Ultrawet_Combustion_For_High_Efficiency_Low_Emission_Gas_Turbines
16.
Göke
,
S.
,
Füri
,
M.
,
Bourque
,
G.
,
Bobusch
,
B.
,
Göckeler
,
K.
,
Krüger
,
O.
,
Schimek
,
S.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2013
, “
Influence of Steam Dilution on the Combustion of Natural Gas and Hydrogen in Premixed and Rich-Quench-Lean Combustors
,”
Fuel Process. Technol.
,
107
, pp.
14
22
.10.1016/j.fuproc.2012.06.019
17.
Schmitz
,
O.
,
Kaiser
,
S.
,
Klingels
,
H.
,
Kufner
,
P.
,
Obermüller
,
M.
,
Henke
,
M.
,
Zanger
,
J.
, et al.,
2021
, “
Aero Engine Concepts Beyond 2030: Part 3—Experimental Demonstration of Technological Feasibility
,”
ASME J. Eng. Gas Turbines Power
,
143
(
2
), p.
021003
.10.1115/1.4048994
18.
Schmitz
,
O.
,
Klingels
,
H.
, and
Kufner
,
P.
,
2021
, “
Aero Engine Concepts Beyond 2030: Part 1—The Steam Injecting and Recovering Aero Engine
,”
ASME J. Eng. Gas Turbines Power
,
143
(
2
), p.
021001
.10.1115/1.4048985
19.
Pouzolz
,
R.
,
Schmitz
,
O.
, and
Klingels
,
H.
,
2021
, “
Evaluation of the Climate Impact Reduction Potential of the Water-Enhanced Turbofan (WET) Concept
,”
Aerospace
,
8
(
3
), p.
59
.10.3390/aerospace8030059
20.
Kaiser
,
S.
,
Schmitz
,
O.
,
Ziegler
,
P.
, and
Klingels
,
H.
,
2022
, “
The Water-Enhanced Turbofan as Enabler for Climate-Neutral Aviation
,”
Appl. Sci.
,
12
(
23
), p.
12431
.10.3390/app122312431
21.
Kulkarni
,
S.
,
Guo
,
S.
,
Silva
,
C. F.
, and
Polifke
,
W.
,
2021
, “
Confidence in Flame Impulse Response Estimation From Large Eddy Simulation With Uncertain Thermal Boundary Conditions
,”
ASME J. Eng. Gas Turbines Power
,
143
(
12
), p.
121002
.10.1115/1.4052022
22.
Merk
,
M.
,
Gaudron
,
R.
,
Gatti
,
M.
,
Mirat
,
C.
,
Schuller
,
T.
, and
Polifke
,
W.
,
2018
, “
Measurement and Simulation of Combustion Noise and Dynamics of a Confined Swirl Flame
,”
AIAA J.
,
56
(
5
), pp.
1930
1942
.10.2514/1.J056502
23.
Eder
,
A. J.
,
Silva
,
C. F.
,
Haeringer
,
M.
,
Kuhlmann
,
J.
, and
Polifke
,
W.
,
2023
, “
Incompressible Versus Compressible Large Eddy Simulation for the Identification of Premixed Flame Dynamics
,”
Int. J. Spray Combust. Dyn.
,
15
(
1
), pp.
16
32
.10.1177/17568277231154204
24.
Kuhlmann
,
J.
,
Lampmann
,
A.
,
Pfitzner
,
M.
, and
Polifke
,
W.
,
2022
, “
Assessing Accuracy, Reliability and Efficiency of Combustion Models for Prediction of Flame Dynamics With Large Eddy Simulation
,”
Phys. Fluids
,
34
(
9
), p.
095117
.10.1063/5.0098975
25.
Kutkan
,
H.
,
2023
, “
Modelling Turbulent Premixed CH4/H2/Air Flames With Effects of Stretch, Heat Loss and Non-Unity Lewis Number for Flame Stabilization and Dynamics
,”
Ph.D. thesis
,
University of Genoa
,
Genoa, Italy
.10.13140/RG.2.2.17990.65603
26.
Bothien
,
M.
,
Lauper
,
D.
,
Yang
,
Y.
, and
Scarpato
,
A.
,
2019
, “
Reconstruction and Analysis of the Acoustic Transfer Matrix of a Reheat Flame From Large-Eddy Simulations
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021018
.10.1115/1.4041151
27.
Rabiner
,
L.
,
Crochiere
,
R.
, and
Allen
,
J.
,
1978
, “
FIR System Modeling and Identification in the Presence of Noise and With Band-Limited Inputs
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
26
(
4
), pp.
319
333
.10.1109/TASSP.1978.1163113
28.
Hosseini
,
N.
,
Kornilov
,
V. N.
,
Teerling
,
O. J.
,
Lopez Arteaga
,
I.
, and
de Goey
,
P.
,
2018
, “
Evaluating Thermoacoustic Properties of Heating Appliances Considering the Burner and Heat Exchanger as Acoustically Active Elements
,”
Combust. Flame
,
191
, pp.
486
495
.10.1016/j.combustflame.2018.01.030
29.
Rice
,
J. A.
,
2007
,
Mathematical Statistics and Data Analysis (Duxbury Advanced Series)
, 3rd ed.,
Thomson/Brooks/Cole
,
Belmont, CA
.
30.
Krüger
,
O.
,
Göckeler
,
K.
,
Göke
,
S.
,
Paschereit
,
C. O.
,
Duwig
,
C.
, and
Fuchs
,
L.
,
2011
, “
Numerical Investigations of a Swirl-Stabilized Premixed Flame at Ultra-Wet Conditions
,”
ASME
Paper No. GT2011-45866.10.1115/GT2011-45866
31.
Weller
,
H.
,
Greenshields
,
C.
, and
Jasak
,
H.
,
2022
, “
OpenFOAM-10
,” The OpenFOAM Foundation, The OpenFOAM Foundation Ltd., London, UK.
32.
Ducros
,
F.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
1998
,
Wall-Adapting Local Eddy-Viscosity Models for Simulations in Complex Geometries
,
Oxford University Computing Laboratory
,
Oxford, UK
.
33.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
34.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for Les of Premixed Turbulent Combustion Part I: Non-Dynamic Formulation and Initial Tests
,”
Combust. Flame
,
131
(
1–2
), pp.
159
180
.10.1016/S0010-2180(02)00400-5
35.
Franzelli
,
B.
,
Riber
,
E.
,
Gicquel
,
L. Y.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulation of Combustion Instabilities in a Lean Partially Premixed Swirled Flame
,”
Combust. Flame
,
159
(
2
), pp.
621
637
.10.1016/j.combustflame.2011.08.004
36.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2023
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Zenodo.
37.
Hiestermann
,
M.
,
Konle
,
M.
, and
de Guillebon
,
L.
,
2022
, “
Numerical Investigation of the Effect of High Steam Loads on the Combustion of an Academic Premixed Swirl Stabilized Combustor
,”
GPPS Chania22
, Chania, Greece, Sept. 12–14, Paper No. GPPS-TC-2022-0094.10.33737/gpps22-tc-94
38.
Garcia
,
A. M.
,
Le Bras
,
S.
,
Prager
,
J.
,
Häringer
,
M.
, and
Polifke
,
W.
,
2022
, “
Large Eddy Simulation of the Dynamics of Lean Premixed Flames Using Global Reaction Mechanisms Calibrated for CH4-H2 Fuel Blends
,”
Phys. Fluids
,
34
(
9
), p. 095105.10.1063/5.0098898
39.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
, et al., “
GRI-Mech 3.0
,” accessed Dec. 1, 2023, http://www.me.berkeley.edu/gri_mech/
40.
Albin
,
E.
,
Nawroth
,
H.
,
Göke
,
S.
,
D'Angelo
,
Y.
, and
Paschereit
,
C. O.
,
2013
, “
Experimental Investigation of Burning Velocities of Ultra-Wet Methane–Air–Steam Mixtures
,”
Fuel Process. Technol.
,
107
, pp.
27
35
.10.1016/j.fuproc.2012.06.027
41.
Föller
,
S.
, and
Polifke
,
W.
,
2011
, “
Advances in Identification Techniques for Aero-Acoustic Scattering Coefficients From Large Eddy Simulation
,”
18th International Congress on Sound and Vibration (ICSV18)
, Rio de Janeiro, Brazil, July 10–14, Vol.
4
.https://www.researchgate.net/publication/255738384_Advances_in_Identification_Techniques_for_Aero-Acoustic_Scattering_Coefficients_from_Large_Eddy_Simulation
42.
Polifke
,
W.
, and
Lawn
,
C. J.
,
2007
, “
On the Low-Frequency Limit of Flame Transfer Functions
,”
Combust. Flame
,
151
(
3
), pp.
437
451
.10.1016/j.combustflame.2007.07.005
You do not currently have access to this content.