Abstract

Supercritical carbon dioxide (sCO2) cycles are compact, cost-effective and widely adaptable to various heat sources, including the waste heat from gas turbine (GT) exhaust gases. While the addition of a steam cycle enhances the typical 40% efficiency of GTs up to 60%, their substantial investments render them less appealing for smaller GTs. This creates an opportunity for sCO2 cycles, but a comprehensive comparison of their performance with that of steam across a range of applications remains lacking. Moreover, their applicability to various industrial scenarios based on existing installations is missing from a techno-economic standpoint. To address these needs, four promising sCO2 cycles are evaluated and optimized using Aspen, and compared with the simple steam cycle. Their techno-economic performances are then investigated for 20 industrial GTs of different size up to the larger combined cycle gas turbine (CCGT) units incorporating amine-based carbon capture systems. Due to the significant investments required by the carbon capture unit, the implementation of a CC unit is only investigated for the largest CCGT units. The analysis yielded performance maps demonstrating comparable performances for sCO2 and steam cycles, as well as significant techno-economic advantages for sCO2 bottoming cycles for smaller GTs. However, when it comes to larger GTs combined with reheats and expansions steam cycles, sCO2 cannot outperform them in current technological standards. Nevertheless sCO2 cycles offers an attractive alternative, facilitating cogeneration. Among the different approaches designed to integrate the heat requirements of amine-based capture, steam cycles have always proved more suitable because of the thermal stability of amines. In conclusion, the research underscores the cost-effectiveness and adaptability of sCO2 cycles for heat recovery applications, particularly as bottoming cycles for smaller GTs, while larger GTs present a challenge. The work conducted sheds light on the substantial promise of sCO2 cycles, encouraging further exploration and implementation of these systems in the energy sector.

References

1.
White
,
M. T.
,
Bianchi
,
G.
,
Chai
,
L.
,
Tassou
,
S. A.
, and
Sayma
,
A. I.
,
2021
, “
Review of Supercritical CO2 Technologies and Systems for Power Generation
,”
Appl. Therm. Eng.
,
185
, p.
116447
.10.1016/j.applthermaleng.2020.116447
2.
Guo
,
Z.
,
Zhao
,
Y.
,
Zhu
,
Y.
,
Niu
,
F.
, and
Lu
,
D.
,
2018
, “
Optimal Design of Supercritical CO2 Power Cycle for Next Generation Nuclear Power Conversion Systems
,”
Prog. Nucl. Energy
,
108
, pp.
111
121
.10.1016/j.pnucene.2018.04.023
3.
Besarati
,
S.
, and
Goswami
,
D.
,
2017
, “
Supercritical CO2 and Other Advanced Power Cycles for Concentrating Solar Thermal (CST) Systems
,”
Advances in Concentrating Solar Thermal Research and Technology
, Woodhead Publishing, Sawston, UK, pp.
157
178
.10.1016/B978-0-08-100516-3.00008-3
4.
Cho
,
S. K.
,
Kim
,
M.
,
Baik
,
S.
,
Ahn
,
Y.
, and
Lee
,
J. I.
,
2015
, “
Investigation of the Bottoming Cycle for High Efficiency Combined Cycle Gas Turbine System With Supercritical Carbon Dioxide Power Cycle
,”
ASME
Paper No. GT2015-43077.10.1115/GT2015-43077
5.
Liu
,
Y.
,
Wang
,
Y.
, and
Huang
,
D.
,
2019
, “
Supercritical CO2 Brayton Cycle: A State-of-the-Art Review
,”
Energy
,
189
, p.
115900
.10.1016/j.energy.2019.115900
6.
Brun
,
K.
,
Friedman
,
P.
, and
Dennis
,
R.
,
2017
,
Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles
,
Woodhead Publishing
, Sawston, UK.
7.
Fuller
,
R.
,
Preuss
,
J.
, and
Noall
,
J.
,
2012
, “
Turbomachinery for Supercritical CO2 Power Cycles
,”
ASME
Paper No. GT2012-68735.10.1115/GT2012-68735
8.
Weiland
,
N. T.
,
Lance
,
B. W.
, and
Pidaparti
,
S. R.
,
2019
, “
SCO2 Power Cycle Component Cost Correlations From DOE Data Spanning Multiple Scales and Applications
,”
ASME
Paper No. GT2019-90493.10.1115/GT2019-90493
9.
Cagnac
,
A.
,
Mecheri
,
M.
, and
Bedogni
,
S.
,
2019
,
Configuration of a Flexible and Efficient sCO2 Cycle for Fossil Power Plant
,
Universität Duisburg-Essen
, Duisburg, Germany.
10.
Stepanek
,
J.
,
Entler
,
S.
,
Syblik
,
J.
,
Vesely
,
L.
,
Dostal
,
V.
, and
Zacha
,
P.
,
2020
, “
Parametric Study of S-CO2 Cycles for the DEMO Fusion Reactor
,”
Fusion Eng. Des.
,
160
, p.
111992
.10.1016/j.fusengdes.2020.111992
11.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
, and
Martínez
,
G. S.
,
2017
, “
Supercritical Carbon Dioxide Cycles for Power Generation: A Review
,”
Appl. Energy
,
195
, pp.
152
183
.10.1016/j.apenergy.2017.02.048
12.
Wright
,
S. A.
,
Davidson
,
C. S.
, and
Scammell
,
W. O.
,
2016
, “
Thermo-Economic Analysis of Four sCO2 Waste Heat Recovery Power Systems
,”
Fifth International SCO2 Symposium
,
San Antonio, TX
, Mar. 29–31, pp.
28
31
.https://sco2symposium.com/papers2016/SystemModeling/059paper.pdf
13.
Rubin
,
E. S.
,
Mantripragada
,
H.
,
Marks
,
A.
,
Versteeg
,
P.
, and
Kitchin
,
J.
,
2012
, “
The Outlook for Improved Carbon Capture Technology
,”
Prog. Energy Combus. Sci.
,
38
(
5
), pp.
630
671
.10.1016/j.pecs.2012.03.003
14.
Aspen Technology Inc
., 2024, “
Aspen Plus
,” Aspen Technology Inc., Bedford, MA.
15.
Alfani
,
D.
,
Binotti
,
M.
,
Macchi
,
E.
,
Silva
,
P.
, and
Astolfi
,
M.
,
2021
, “
sCO2 Power Plants for Waste Heat Recovery: Design Optimization and Part-Load Operation Strategies
,”
Appl. Therm. Eng.
,
195
, p.
117013
.10.1016/j.applthermaleng.2021.117013
16.
Baggiani
,
M.
,
Bruttini
,
P.
,
Cagnac
,
A.
,
De Vos
,
Y.
,
Glos
,
S.
,
Persico
,
G.
,
Spolcova
,
J.
,
Le Pierres
,
R.
, et al.,
2022
, “
Supporting Document for the CO2OLHEAT
,”
Supercritical CO2 Power Cycles Symposium
, San Antonio, TX, Feb. 21–24, p.
12
.
17.
Biondi
,
M.
,
2020
, “
Business Case for sCO2 Waste Heat Recovery System
,” ETN Global, Brussels, Belgium, Report.https://etn.global/wp-content/uploads/2020/10/Business-case-for-sCO2-Waste-Heat-Recovery-System.pdf
18.
Dinėr
,
I.
,
2013
,
Exergy: Energy, Environment and Sustainable Development
,
Elsevier, Amsterdam, The Netherlands
.
19.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.10.1063/1.555991
20.
White
,
C. W.
, and
Weiland
,
N. T.
,
2018
, “
Evaluation of Property Methods for Modeling Direct-Supercritical CO2 Power Cycles
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
011701
.10.1115/1.4037665
21.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M.
, and
McLinden
,
M.
,
2018
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport properties-REFPROP, Version 10.0, National Institute of Standards and Technology
,”
Standard Reference Data Program
,
Gaithersburg, MD
.
22.
Zhao
,
Q.
,
Mecheri
,
M.
,
Neveux
,
T.
,
Privat
,
R.
, and
Jaubert
,
J.-N.
,
2016
, “
Thermodynamic Model Investigation for Supercritical CO2 Brayton Cycle for Coal-Fired Power Plant Application
,”
Proceedings of the Fifth International Supercritical CO2 Power Cycles Symposium
,
San Antonio, TX
, Mar. 29–31, pp.
29
31.
https://www.sco2symposium.com/papers2016/Testing/093paper.pdf
23.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.10.1016/j.net.2015.06.009
24.
Gülen
,
S.
,
2019
,
Gas Turbine Combined Cycle Power Plants
,
CRC Press
, Boca Raton, FL.
25.
Ancona
,
M. A.
,
Bianchi
,
M.
,
Branchini
,
L.
,
De Pascale
,
A.
,
Melino
,
F.
,
Peretto
,
A.
, and
Torricelli
,
N.
,
2021
, “
Systematic Comparison of ORC and s-CO2 Combined Heat and Power Plants for Energy Harvesting in Industrial Gas Turbines
,”
Energies
,
14
(
12
), p.
3402
.10.3390/en14123402
26.
Gotelip
,
T.
,
Gampe
,
U.
, and
Glos
,
S.
,
2021
, “
Techno-Economic Optimization Method and Its Application to a SCO2 Gas Turbine Bottoming Cycle
,”
Universität Duisburg-Essen, 4th European sCO2 Conference for Energy Systems, Online, Mar. 23–24
.https://sco2.eu/fileadmin/user_upload/presentations/2021/Gotelip-Techno-economic_optimization_method_and_its_application-112_c.pdf
27.
Gotelip
,
T.
,
Gampe
,
U.
, and
Glos
,
S.
,
2022
, “
Optimization Strategies of Different SCO2 Architectures for Gas Turbine Bottoming Cycle Applications
,”
Energy
,
250
, p.
123734
.10.1016/j.energy.2022.123734
28.
Elmasri
,
M. A.
, and
Foster-Pegg
,
R.
,
2009
, “
Design of Gas Turbine Combined Cycle and Cogeneration Systems
,”
Thermoflow Inc.
,
Southborough, MA
, pp.
5
1
.
29.
Huck
,
P.
,
Freund
,
S.
,
Lehar
,
M.
, and
Peter
,
M.
,
2016
, “
Performance Comparison of Supercritical CO2 Versus Steam Bottoming Cycles for Gas Turbine Combined Cycle Applications
,”
5th International Supercritical CO2 Power Cycle Symposium
, San Antonio TX, Mar. 29–31.https://sco2symposium.com/papers2016/SystemConcepts/092paper.pdf
30.
Kimzey
,
G.
,
2012
, “
Development of a Brayton Bottoming Cycle Using Supercritical Carbon Dioxide as the Working Fluid
,” EPRI Report No. 1.
31.
Romei
,
A.
,
Gaetani
,
P.
,
Persico
,
G.
, et al.,
2021
, “
Design and Off-Design Analysis of a Highly Loaded Centrifugal Compressor for sCO2 Applications Operating in Near-Critical Conditions
,”
4th European sCO2 Conference for Energy Systems
, Online, Mar. 23–24, pp.
1
10
.10.17185/duepublico/73969
32.
Alfani
,
D.
,
Astolfi
,
M.
,
Silva
,
P.
, and
Persico
,
G.
,
2022
, “
Technical Report: Off Design Performance of the sCO2 Power Unit Connected to the Cement Plant Heat Recovery
,” CO2OLHEAT, June 23.
33.
Verhaeghe
,
A.
,
Mendoza Morales
,
M. J.
,
Blondeau
,
J.
,
Demeyer
,
F.
,
Bricteux
,
L.
, and
De Paepe
,
W.
,
2023
, “
Thermodynamic Assessment of a Combined Cycle Gas Turbine With Exhaust Gas Recirculation Under Part-Load Operation Toward Carbon Capture Penalty Reduction
,”
ASME
Paper No. GT2023-101902.10.1115/GT2023-101902
34.
Wilberforce
,
T.
,
Baroutaji
,
A.
,
Soudan
,
B.
,
Al-Alami
,
A. H.
, and
Olabi
,
A. G.
,
2019
, “
Outlook of Carbon Capture Technology and Challenges
,”
Sci. Total Environ.
,
657
, pp.
56
72
.10.1016/j.scitotenv.2018.11.424
35.
Li
,
T.
,
Yang
,
C.
,
Tantikhajorngosol
,
P.
,
Sema
,
T.
,
Liang
,
Z.
,
Tontiwachwuthikul
,
P.
, and
Liu
,
H.
,
2022
, “
Comparative Desorption Energy Consumption of Post-Combustion CO2 Capture Integrated With Mechanical Vapor Recompression Technology
,”
Sep. Purif. Technol.
,
294
, p.
121202
.10.1016/j.seppur.2022.121202
36.
Armstrong International
,
2023
, “
Pompes à Chaleur Industrielles Haute Température
,” Armstrong International, Plainfield, NJ, accessed Mar. 17, 2023, https://armstronginternational.eu/fr/produits/solutions-premontees-de-pompe-a-chaleur/
You do not currently have access to this content.